

CSC415: Introduction to Reinforcement Learning

Lecture 2: Planning by Dynamic Programming

Dr. Amey Pore

Winter 2026

January 14, 2026

Structure and content adapted from David Silver's and Emma Brunskill's course on Introduction to RL.

Think Pair Wise 1

In a Markov decision process, a large discount factor γ means that short term rewards are much more influential than long term rewards.

Answers: • True • False • Don't know

s_1	s_2	s_3	s_4	s_5	s_6	s_7

- 7 discrete states (location of rover)
- 2 actions: Left or Right
- How many deterministic policies are there?

Outline

- 1 Recap
- 2 MDPs
- 3 Introduction to Dynamic Programming
- 4 Policy Iteration
- 5 Course logistics
- 6 Value Iteration

Return & Value Function

- **Definition of Horizon (H)**

- Number of time steps in each episode
- Can be infinite
- Otherwise called **finite** Markov reward process

- **Definition of Return, G_t (for a MRP)**

- Discounted sum of rewards from time step t to horizon H

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots + \gamma^{H-1} r_{t+H-1}$$

- **Definition of State Value Function, $V(s)$ (for a MRP)**

- Expected return from starting in state s

$$V(s) = \mathbb{E}[G_t | S_t = s] = \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots + \gamma^{H-1} r_{t+H-1} | S_t = s]$$

Bellman Equation for MRPs

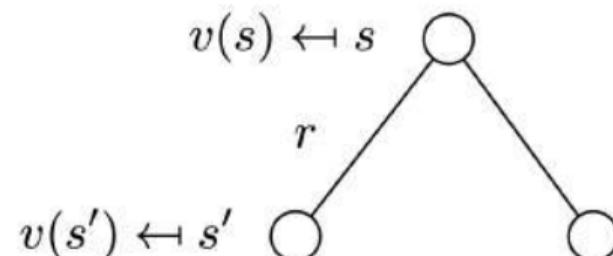
The value function can be decomposed into two parts:

- immediate reward R_{t+1}
- discounted value of successor state $\gamma V(S_{t+1})$

$$\begin{aligned} V(s) &= \mathbb{E}[G_t | S_t = s] \\ &= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s] \\ &= \mathbb{E}[R_{t+1} + \gamma(R_{t+2} + \gamma R_{t+3} + \dots) | S_t = s] \\ &= \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s] \\ &= \mathbb{E}[R_{t+1} + \gamma V(S_{t+1}) | S_t = s] \end{aligned}$$

Bellman Equation for MRPs (2)

$$V(s) = \mathbb{E}[R_{t+1} + \gamma V(S_{t+1}) | S_t = s]$$



$$V(s) = \underbrace{R(s)}_{\text{Immediate reward}} + \underbrace{\gamma \sum_{s' \in S} P(s'|s)V(s')}_{\text{Discounted sum of future rewards}}$$

Matrix Form of Bellman Equation for MRP

For finite state MRP, we can express $V(s)$ using a matrix equation

$$\begin{pmatrix} V(s_1) \\ \vdots \\ V(s_N) \end{pmatrix} = \begin{pmatrix} R(s_1) \\ \vdots \\ R(s_N) \end{pmatrix} + \gamma \begin{pmatrix} P(s_1|s_1) & \cdots & P(s_N|s_1) \\ P(s_1|s_2) & \cdots & P(s_N|s_2) \\ \vdots & \ddots & \vdots \\ P(s_1|s_N) & \cdots & P(s_N|s_N) \end{pmatrix} \begin{pmatrix} V(s_1) \\ \vdots \\ V(s_N) \end{pmatrix}$$

$$\mathbf{V} = \mathbf{R} + \gamma \mathbf{PV}$$

Analytic Solution for Value of MRP

For finite state MRP, we can express $V(s)$ using a matrix equation

$$\mathbf{V} = \mathbf{R} + \gamma \mathbf{P} \mathbf{V}$$

$$\mathbf{V} - \gamma \mathbf{P} \mathbf{V} = \mathbf{R}$$

$$(\mathbf{I} - \gamma \mathbf{P}) \mathbf{V} = \mathbf{R}$$

$$\mathbf{V} = (\mathbf{I} - \gamma \mathbf{P})^{-1} \mathbf{R}$$

- Solving directly requires taking a matrix inverse $\sim O(N^3)$
- Requires that $(\mathbf{I} - \gamma \mathbf{P})$ is invertible
- Direct solutions only possible for small MRPs

Markov Decision Process (MDP)

A Markov decision process (MDP) is a Markov reward process with decisions. It is an *environment* in which all states are Markov.

Definition

A Markov Decision Process is a tuple $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$

- \mathcal{S} is a (finite) set of Markov states $s \in \mathcal{S}$
- \mathcal{A} is a (finite) set of **actions** $a \in \mathcal{A}$
- \mathcal{P} is dynamics/transition model for **each action**, $P(s_{t+1} = s' | s_t = s, a_t = a)$
- \mathcal{R} is a reward function $R(s_t = s, a_t = a) = \mathbb{E}[r_t | s_t = s, a_t = a]$
- Discount factor $\gamma \in [0, 1]$

Example: Mars Rover MDP

s_1	s_2	s_3	s_4	s_5	s_6	s_7

- 2 deterministic actions

$$P(s'|s, a_1) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$P(s'|s, a_2) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

MDP Policies

Definition

A *policy* π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}[A_t = a | S_t = s]$$

- A policy fully defines the behaviour of an agent
- MDP policies depend on the current state (not the history)
- i.e. Policies are *stationary* (time-independent),

$$A_t \sim \pi(\cdot | S_t), \forall t > 0$$

MDP Policies (2)

- Given an MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and a policy π
- The state sequence S_1, S_2, \dots is a Markov process $\langle \mathcal{S}, \mathcal{P}^\pi \rangle$
- The state and reward sequence S_1, R_2, S_2, \dots is a Markov reward process $\langle \mathcal{S}, \mathcal{P}^\pi, \mathcal{R}^\pi, \gamma \rangle$
- where

$$R^\pi(s) = \sum_{a \in \mathcal{A}} \pi(a|s) R(s, a)$$

$$P^\pi(s'|s) = \sum_{a \in \mathcal{A}} \pi(a|s) P(s'|s, a)$$

Value Function under a Policy

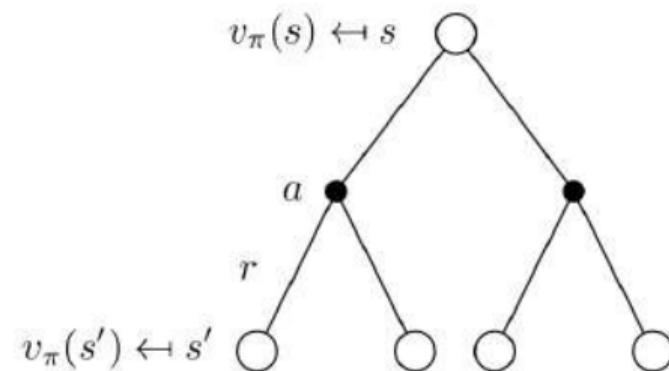
Definition

The state-value function $V^\pi(s)$ of an MDP is the expected return starting from state s , and then following policy π

$$V^\pi(s) = \mathbb{E}_\pi[G_t | s_t = s]$$

Bellman Expectation Equation

The state-value function can again be decomposed into immediate reward plus discounted value of successor state, $V^\pi(s) = \mathbb{E}_\pi[r_{t+1} + \gamma V^\pi(s_{t+1})|s_t = s]$



$$V^\pi(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left[R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V^\pi(s') \right]$$

Optimal Value Function

Definition

The *optimal state-value function* $V^*(s)$ is the maximum value function over all policies

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

- The optimal value function gives the best possible performance in the MDP
- An MDP is "solved" when we know the optimal value function

Optimal Policy

Define a partial ordering over policies

$$\pi \geq \pi' \text{ if } V^\pi(s) \geq V^{\pi'}(s), \forall s$$

Theorem

For any Markov Decision Process

- There exists an optimal policy π^* that is better than or equal to all other policies,
 $\pi^* \geq \pi, \forall \pi$
- All optimal policies achieve the optimal value function,

$$V^{\pi^*}(s) = V^*(s)$$

Finding an Optimal Policy

- Compute the optimal policy

$$\pi^*(s) = \arg \max_{\pi} V^{\pi}(s)$$

- There exists a **unique** optimal value function
- Optimal policy for a MDP in an infinite horizon problem is deterministic

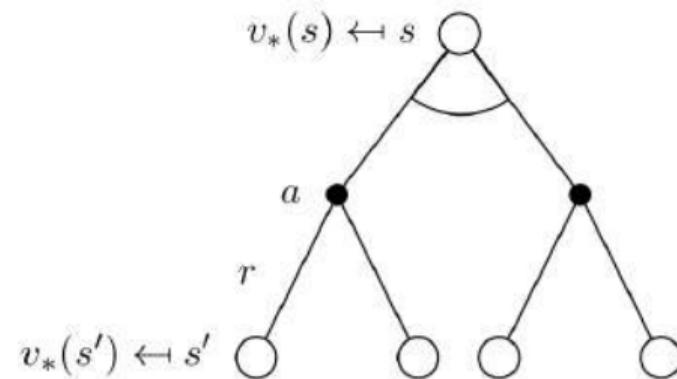
Finding an Optimal Policy

- Compute the optimal policy

$$\pi^*(s) = \arg \max_{\pi} V^{\pi}(s)$$

- There exists a **unique** optimal value function
- Optimal policy for a MDP in an infinite horizon problem (agent acts forever) is:
 - Deterministic
 - Stationary (does not depend on time step)
 - Unique? Not necessarily, may have two policies with identical (optimal) values

Bellman Optimality Equation



$$V^*(s) = \max_a R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V^*(s')$$

Today's lecture: Recommendations

- The content is theoretical, but fundamental to RL
- Hence, if you don't ask questions, you will not understand
- You might get a reward for asking questions

What is Dynamic Programming?

- **Dynamic:** sequential or temporal component to the problem
- **Programming:** optimising a “program”, i.e. a policy
 - c.f. linear programming
- A method for solving complex problems
- By breaking them down into subproblems
 - Solve the subproblems
 - Combine solutions to subproblems

Requirements for Dynamic Programming

Dynamic Programming is a very general solution method for problems which have two properties:

- **Optimal substructure**

- Principle of optimality applies
- Optimal solution can be decomposed into subproblems

- **Overlapping subproblems**

- Subproblems recur many times
- Solutions can be cached and reused

- **MDPs satisfy both properties**

- Bellman equation gives recursive decomposition
- Value function stores and reuses solutions

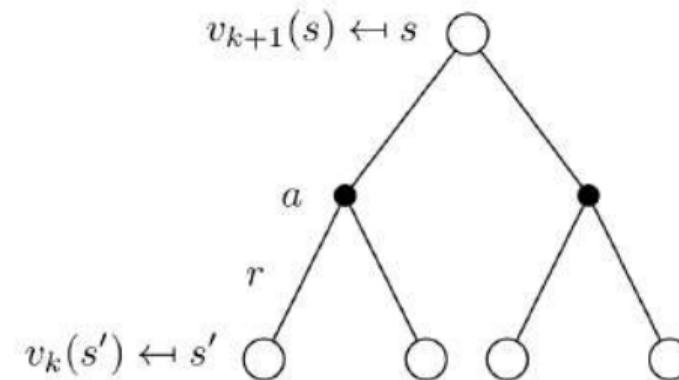
Planning by Dynamic Programming

- Dynamic programming assumes **full knowledge of the MDP**
- It is used for **planning** in an MDP
- **For prediction:**
 - Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and policy π
 - or: MRP $\langle \mathcal{S}, \mathcal{P}^\pi, \mathcal{R}^\pi, \gamma \rangle$
 - Output: value function V^π
- **Or for control:**
 - Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - Output: optimal value function V^*
 - and: optimal policy π^*

Iterative Policy Evaluation

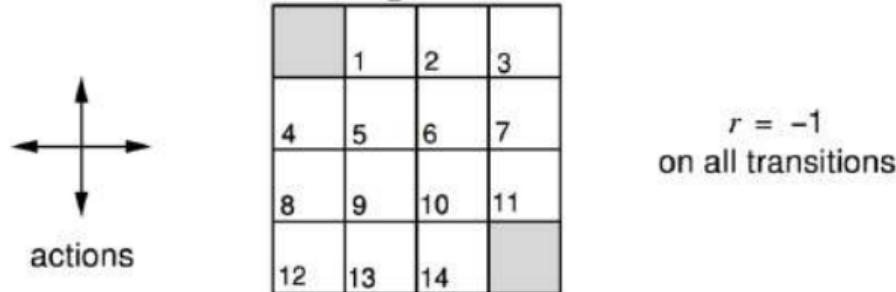
- **Problem:** evaluate a given policy π
- **Solution:** iterative application of Bellman expectation backup
- $V_1 \rightarrow V_2 \rightarrow \dots \rightarrow V_\pi$
- Using **synchronous** backups,
 - At each iteration $k + 1$
 - For all states $s \in \mathcal{S}$
 - Update $V_{k+1}(s)$ from $V_k(s')$
 - where s' is a successor state of s

Iterative Policy Evaluation 2



$$V_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V_k(s') \right)$$

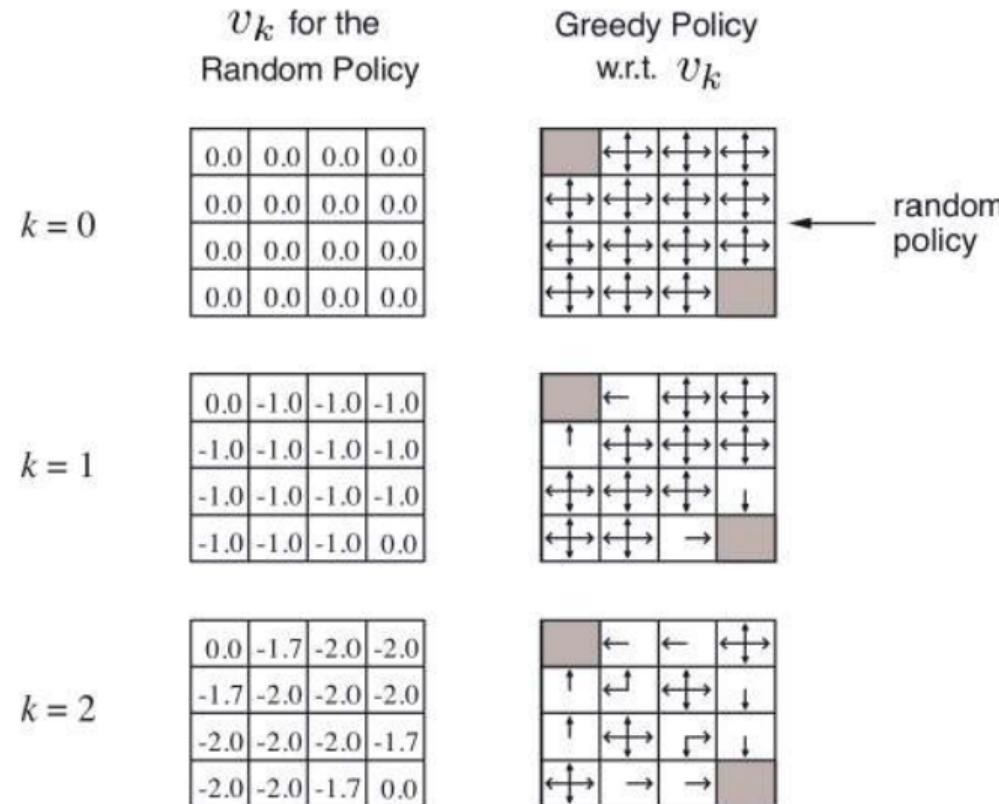
Evaluating a Random Policy in the Small Gridworld



- Undiscounted episodic MDP ($\gamma = 1$)
- Nonterminal states $1, \dots, 14$
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

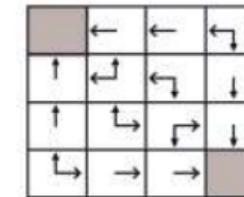
Iterative Policy Evaluation in Small Gridworld



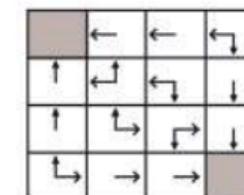
Iterative Policy Evaluation in Small Gridworld (2)

 $k = 3$

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

 $k = 10$

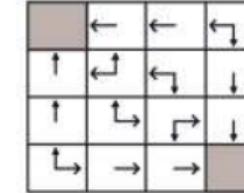
0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0



optimal policy

 $k = \infty$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0



Homework Exercise: MDP 1 Iteration of Policy Evaluation

- **Dynamics:** $P(s_6|s_6, a_1) = 0.5, P(s_7|s_6, a_1) = 0.5, \dots$
- **Reward:** for all actions, +1 in state s_1 , +10 in state s_7 , 0 otherwise
- Let $\pi(s) = a_1 \forall s$, assume $V_k = [1, 0, 0, 0, 0, 0, 10]$ and $k = 1, \gamma = 0.5$
- **Compute** $V_{k+1}(s_6)$

See answer at the end of the slide deck. Work this out yourself, if you'd like to practice. Then check the answer.

How to Improve a Policy

- Given a policy π
 - Evaluate the policy π

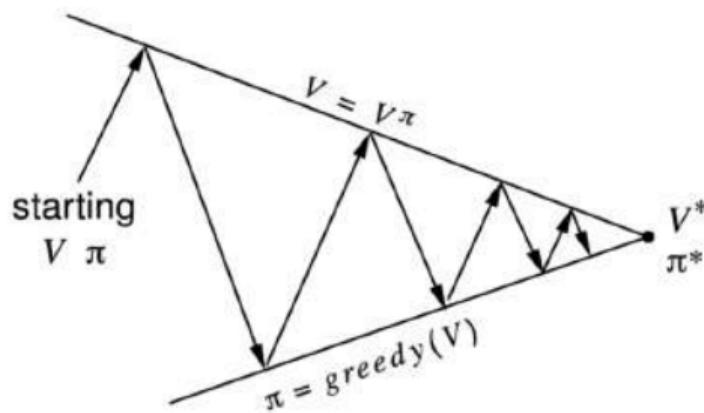
$$V^\pi(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s]$$

- Improve the policy by acting greedily with respect to V^π

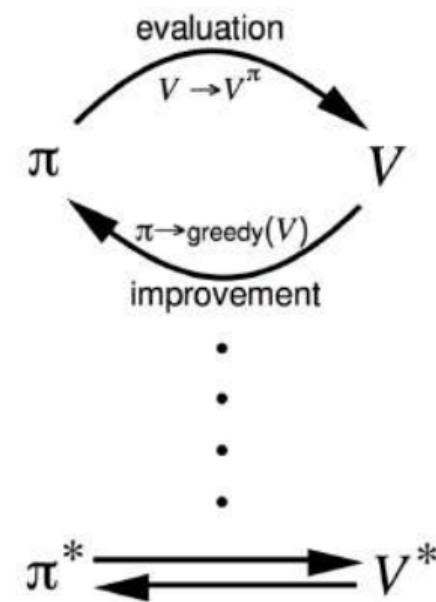
$$\pi' = \text{greedy}(V^\pi)$$

- In Small Gridworld improved policy was optimal, $\pi' = \pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to π^*

Policy Iteration



- Policy evaluation Estimate V^π
Iterative policy evaluation
- Policy improvement Generate $\pi' \geq \pi$
Greedy policy improvement



New Definition: State-Action Value Q

- State-action value of a policy

$$Q^\pi(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V^\pi(s')$$

- Take action a , then follow the policy π

Policy Improvement

- Compute state-action value of a policy π_i

- For s in S and a in A :

$$Q^{\pi_i}(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi_i}(s')$$

- Compute new policy π_{i+1} , for all $s \in S$

$$\pi_{i+1}(s) = \arg \max_a Q^{\pi_i}(s, a) \quad \forall s \in S$$

MDP Policy Iteration (PI)

- Set $i = 0$
- Initialize $\pi_0(s)$ randomly for all states s
- While $i == 0$ or $\|\pi_i - \pi_{i-1}\|_1 > 0$ (L1-norm, measures if the policy changed for any state):
 - $V^{\pi_i} \leftarrow \text{MDP } V \text{ function policy evaluation of } \pi_i$
 - $\pi_{i+1} \leftarrow \text{Policy improvement}$
 - $i = i + 1$

Delving Deeper Into Policy Improvement Step

$$Q^{\pi_i}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V^{\pi_i}(s')$$

Delving Deeper Into Policy Improvement Step

$$Q^{\pi_i}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V^{\pi_i}(s')$$

$$\max_a Q^{\pi_i}(s, a) \geq R(s, \pi_i(s)) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, \pi_i(s)) V^{\pi_i}(s') = V^{\pi_i}(s)$$

$$\pi_{i+1}(s) = \arg \max_a Q^{\pi_i}(s, a)$$

- Suppose we take $\pi_{i+1}(s)$ for one action, then follow π_i forever
 - Our expected sum of rewards is at least as good as if we had always followed π_i
- But new proposed policy is to always follow $\pi_{i+1} \dots$

Monotonic Improvement in Policy

$$\begin{aligned} V^{\pi_i}(s) &\leq \max_a Q^{\pi_i}(s, a) \\ &= \max_a R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi_i}(s') \end{aligned}$$

Proof: Monotonic Improvement in Policy

$$\begin{aligned}
 V^{\pi_i}(s) &\leq \max_a Q^{\pi_i}(s, a) \\
 &= \max_a R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi_i}(s') \\
 &= R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i+1}(s)) V^{\pi_i}(s') \quad // \text{ by the definition of } \pi_{i+1} \\
 &\leq R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i+1}(s)) \left(\max_{a'} Q^{\pi_i}(s', a') \right) \\
 &= R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i+1}(s)) \\
 &\quad \left(R(s', \pi_{i+1}(s')) + \gamma \sum_{s'' \in S} P(s''|s', \pi_{i+1}(s')) V^{\pi_i}(s'') \right) \\
 &\quad \vdots \\
 &= V^{\pi_{i+1}}(s)
 \end{aligned}$$

Course logistics

- ➊ First lab tomorrow: dynamic programming, due date on Jan 20th at 11:59pm.
 - The submission will be on MarkUs.
 - Submit .ipynb notebook.
- ➋ The office hours time for the TA has changed to Tuesday 5:15pm to 6:15pm.
 - Link to the zoom will be added on the home page Quercus.
- ➌ Mid-term exam will take place on Jan 29th covering the first 4 lectures.
 - **Important:** We will need to exceed the tutorial time by 30mins. It is a 90 mins exam.
 - I will add sample questions on Piazza later today.

Think Pair Wise 2

- **If policy doesn't change, can it ever change again?**
 - Yes / No / Not sure
- **Is there a maximum number of iterations of policy iteration?**
 - Yes / No / Not sure

Break!

Outline

- 1 Recap
- 2 Introduction to Dynamic Programming
- 3 Policy Iteration
- 4 **Value Iteration**

Principle of Optimality

Any optimal policy can be subdivided into two components:

- An optimal first action A_*
- Followed by an optimal policy from successor state S'

Theorem (Principle of Optimality)

A policy $\pi(a|s)$ achieves the optimal value from state s , $V^\pi(s) = V^*(s)$, if and only if

- For any state s' reachable from s
- π achieves the optimal value from state s' , $V^\pi(s') = V^*(s')$

Deterministic Value Iteration

- If we know the solution to subproblems $V^*(s')$
- Then solution $V^*(s)$ can be found by one-step lookahead

$$V^*(s) \leftarrow \max_{a \in \mathcal{A}} \left[R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V^*(s') \right]$$

- The idea of value iteration is to apply these updates iteratively
- Intuition: start with final rewards and work backwards
- Still works with loopy, stochastic MDPs

Example: Shortest Path

g			

Problem

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

 V_1

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1

 V_2

0	-1	-2	-2
-1	-2	-2	-2
-2	-2	-2	-2
-2	-2	-2	-2
-2	-2	-2	-2

 V_3

0	-1	-2	-3
-1	-2	-3	-3
-2	-3	-3	-3
-3	-3	-3	-3

 V_4

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-4
-3	-4	-4	-4

 V_5

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-5

 V_6

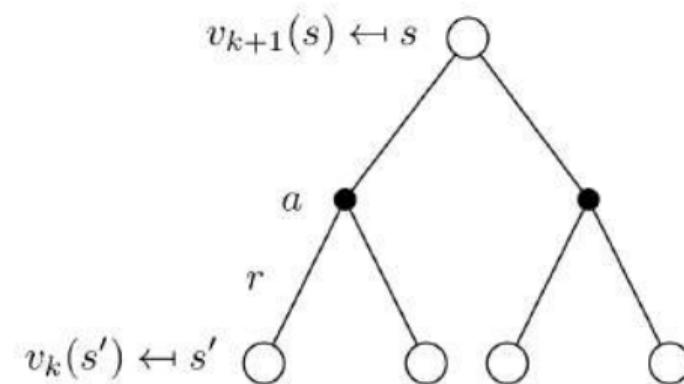
0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6

 V_7

Value Iteration

- Problem: find optimal policy π
- Solution: iterative application of Bellman optimality backup
- $V_1 \rightarrow V_2 \rightarrow \dots \rightarrow V^*$
- Using synchronous backups
 - At each iteration $k + 1$
 - For all states $s \in \mathcal{S}$
 - Update $V_{k+1}(s)$ from $V_k(s')$
- Convergence to V^* will be proven later
- Unlike policy iteration, there is no explicit policy
- Intermediate value functions may not correspond to any policy

Value Iteration (2)



$$V_{k+1}(s) = \max_{a \in \mathcal{A}} \left[R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V_k(s') \right]$$

Example of Value Iteration in Practice

<https://artint.info/demos/mdp/vi.html>

Going Back to Value Iteration (VI)

- Set $k = 1$
- Initialize $V_0(s) = 0$ for all states s
- Loop until convergence: (for ex. $\|V_{k+1} - V_k\|_\infty \leq \epsilon$)
 - For each state s

$$V_{k+1}(s) = \max_a \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_k(s') \right]$$

- To extract optimal policy if can act for $k + 1$ more steps,

$$\pi(s) = \arg \max_a \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_{k+1}(s') \right]$$

Synchronous Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

- Algorithms are based on state-value function $V^\pi(s)$ or $V^*(s)$
- Complexity $O(mn^2)$ per iteration, for m actions and n states
- Could also apply to action-value function $Q^\pi(s, a)$ or $Q^*(s, a)$
- Complexity $O(m^2n^2)$ per iteration

Value vs Policy Iteration

	Policy Iteration	Value Iteration
Algorithm	Iterates through evaluation and improvement	Iterates through Bellman optimality updates
Updates	Solves V^π for a fixed policy	Updates $V(s)$ using max over a
Convergence	Fewer iterations, but each is costly	More iterations, but each is simple
Output	Directly improves the policy	Extracts policy from optimal values

What You Should Know

- Define MP, MRP, MDP, Bellman equation, model, Q-value, policy
- Be able to implement
 - Value Iteration
 - Policy Iteration
- Give pros and cons of different policy evaluation approaches
- Be able to prove contraction properties
- Limitations of presented approaches and Markov assumptions

Some Technical Questions

- How do we know that value iteration converges to V^* ?
- Or that iterative policy evaluation converges to V^π ?
- And therefore that policy iteration converges to V^* ?
- Is the solution unique?
- How fast do these algorithms converge?
- These questions are resolved by *contraction mapping theorem*

Value Function Space

- Consider the vector space \mathcal{V} over value functions
- There are $|\mathcal{S}|$ dimensions
- Each point in this space fully specifies a value function $V(s)$
- What does a Bellman backup do to points in this space?
- We will show that it brings value functions *closer*
- And therefore the backups must converge on a unique solution

Value Function ∞ -Norm

- We will measure distance between state-value functions U and V by the ∞ -norm
- i.e. the largest difference between state values,

$$\|U - V\|_{\infty} = \max_{s \in \mathcal{S}} |U(s) - V(s)|$$

Bellman Expectation Backup is a Contraction

- Define the *Bellman expectation backup operator* T^π ,

$$T^\pi(V) = \mathcal{R}^\pi + \gamma \mathcal{P}^\pi V$$

- This operator is a γ -contraction, i.e. it makes value functions closer by at least γ ,

$$\begin{aligned}\|T^\pi(U) - T^\pi(V)\|_\infty &= \|(\mathcal{R}^\pi + \gamma \mathcal{P}^\pi U) - (\mathcal{R}^\pi + \gamma \mathcal{P}^\pi V)\|_\infty \\ &= \|\gamma \mathcal{P}^\pi(U - V)\|_\infty \\ &\leq \|\gamma \mathcal{P}^\pi\|_\infty \|U - V\|_\infty \\ &\leq \gamma \|U - V\|_\infty\end{aligned}$$

Contraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space \mathcal{V} that is complete (i.e. closed) under an operator $T(\mathcal{V})$, where T is a γ -contraction,

- T converges to a unique fixed point
- At a linear convergence rate of γ

Convergence of Iter. Policy Evaluation and Policy Iteration

- The Bellman expectation operator T^π has a unique fixed point
- V^π is a fixed point of T^π (by Bellman expectation equation)
- By contraction mapping theorem
- Iterative policy evaluation converges on V^π
- Policy iteration converges on V^*

Bellman Optimality Backup is a Contraction

- Define the *Bellman optimality backup operator* T^* ,

$$T^*(V) = \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a V$$

- This operator is a γ -contraction, i.e. it makes value functions closer by at least γ (similar to previous proof)

$$\|T^*(U) - T^*(V)\|_\infty \leq \gamma \|U - V\|_\infty$$

Convergence of Value Iteration

- The Bellman optimality operator T^* has a unique fixed point
- V^* is a fixed point of T^* (by Bellman optimality equation)
- By contraction mapping theorem
- Value iteration converges on V^*

Thank you!

Asynchronous Dynamic Programming

- DP methods described so far used *synchronous* backups
- i.e. all states are backed up in parallel
- *Asynchronous DP* backs up states individually, in any order
- For each selected state, apply the appropriate backup
- Can significantly reduce computation
- Guaranteed to converge if all states continue to be selected

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

- *In-place* dynamic programming
- *Prioritised sweeping*
- *Real-time* dynamic programming

In-Place Dynamic Programming

- Synchronous value iteration stores two copies of value function
for all s in \mathcal{S}

$$v_{\text{new}}(s) \leftarrow \max_{a \in \mathcal{A}} (\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_{\text{old}}(s'))$$

$$v_{\text{old}} \leftarrow v_{\text{new}}$$

- In-place value iteration only stores one copy of value function
for all s in \mathcal{S}

$$v(s) \leftarrow \max_{a \in \mathcal{A}} (\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s'))$$

Prioritised Sweeping

- Use magnitude of Bellman error to guide state selection, e.g.

$$|\max_{a \in \mathcal{A}} (\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s')) - v(s)|$$

- Backup the state with the largest remaining Bellman error
- Update Bellman error of affected states after each backup
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

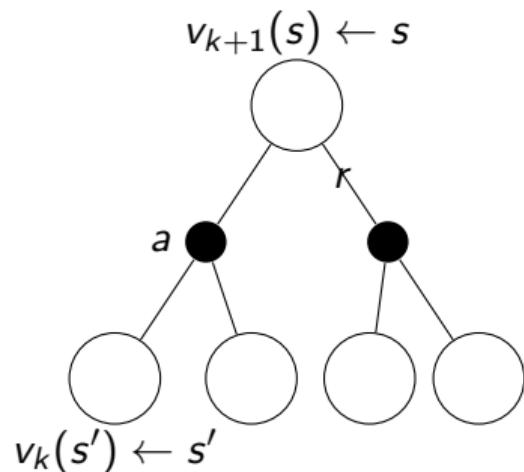
Real-Time Dynamic Programming

- Idea: only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step S_t, A_t, R_{t+1}
- Backup the state S_t

$$v(S_t) \leftarrow \max_{a \in \mathcal{A}} (\mathcal{R}_{S_t}^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{S_t s'}^a v(s'))$$

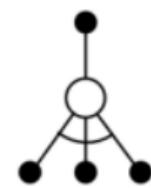
Full-Width Backups

- DP uses *full-width* backups
- For each backup (sync or async)
 - Every successor state and action is considered
 - Using knowledge of the MDP transitions and reward function
- DP is effective for medium-sized problems (millions of states)
- For large problems DP suffers Bellman's *curse of dimensionality*
 - Number of states $n = |\mathcal{S}|$ grows exponentially with number of state variables
- Even one backup can be too expensive



Sample Backups

- In subsequent lectures we will consider *sample backups*
- Using sample rewards and sample transitions $\langle S, A, R, S' \rangle$
- Instead of reward function \mathcal{R} and transition dynamics \mathcal{P}
- Advantages:
 - Model-free: no advance knowledge of MDP required
 - Breaks the curse of dimensionality through sampling
 - Cost of backup is constant, independent of $n = |\mathcal{S}|$



Approximate Dynamic Programming

- Approximate the value function
- Using a *function approximator* $\hat{v}(s, \mathbf{w})$
- Apply dynamic programming to $\hat{v}(\cdot, \mathbf{w})$
- e.g. Fitted Value Iteration repeats at each iteration k ,
 - Sample states $\tilde{\mathcal{S}} \subseteq \mathcal{S}$
 - For each state $s \in \tilde{\mathcal{S}}$, estimate target value using Bellman optimality equation,
$$\tilde{v}_k(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \hat{v}(s', \mathbf{w}_k) \right)$$
 - Train next value function $\hat{v}(\cdot, \mathbf{w}_{k+1})$ using targets $\{(s, \tilde{v}_k(s))\}$

Homework Solution

- **Dynamics:** $P(s_6|s_6, a_1) = 0.5, P(s_7|s_6, a_1) = 0.5, \dots$
- **Reward:** for all actions, +1 in state s_1 , +10 in state s_7 , 0 otherwise
- Let $\pi(s) = a_1 \forall s$, assume $V_k = [1, 0, 0, 0, 0, 0, 10]$ and $k = 1, \gamma = 0.5$
- **Compute** $V_{k+1}(s_6)$

$$\begin{aligned}V_{k+1}(s_6) &= R(s_6) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s_6, a_1) V_k(s') \\&= 0 + 0.5 \times (0.5 \times 10 + 0.5 \times 0) \\&= 2.5\end{aligned}$$

Think pair wise 2: Explanation of Policy Not Changing

- Suppose for all $s \in \mathcal{S}$, $\pi_{i+1}(s) = \pi_i(s)$
- Then for all $s \in \mathcal{S}$, $Q^{\pi_{i+1}}(s, a) = Q^{\pi_i}(s, a)$

Recall policy improvement step:

- $Q^{\pi_i}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V^{\pi_i}(s')$
- $\pi_{i+1}(s) = \arg \max_a Q^{\pi_i}(s, a)$
- $\pi_{i+2}(s) = \arg \max_a Q^{\pi_{i+1}}(s, a) = \arg \max_a Q^{\pi_i}(s, a)$

Opportunities for Out-of-Class Practice

- Does the initialization of values in value iteration impact anything?
- Is the value of the policy extracted from value iteration at each round guaranteed to monotonically improve (if executed in the real infinite horizon problem), like policy iteration?