3 UNIVERSITY OF

¥ TORONTO

CSC415: Introduction to Reinforcement Learning

Lecture 2: Planning by Dynamic Programming

Dr. Amey Pore
Winter 2026

January 14, 2026

Structure and content adapted from David Silver’s and Emma Brunskill's course on Introduction to RL.

N
Think Pair Wise 1

51 S2 53 S i S5 Sg S7

In a Markov decision process, a large discount ‘Ell

factor v means that short term rewards are much
more influential than long term rewards.

, e 7di [
Answers: o True o False e Don't know 7 discrete states (location of rover)

@ 2 actions: Left or Right

@ How many deterministic policies are there?

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 2 /60

Outline

© Recap

@ MDPs

© Introduction to Dynamic Programming
@ Policy lteration

@ Course logistics

@ Value lteration

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 3 /60

Return & Value Function

o Definition of Horizon (H)

o Number of time steps in each episode
e Can be infinite
o Otherwise called finite Markov reward process

o Definition of Return, G; (for a MRP)

o Discounted sum of rewards from time step t to horizon H
Ge=ri4+vres1 +72 o+ 4+ gy
o Definition of State Value Function, V(s) (for a MRP)
o Expected return from starting in state s

V(s) = E[G¢|S: = s] = E[rs + yrep1 + 72ft+2 +- 4+ '7H_1rt+H—1|5t = 5]

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 4 / 60

Bellman Equation for MRPs

The value function can be decomposed into two parts:
@ immediate reward R:;1

o discounted value of successor state vV/(S5¢+1)

V(s) = E[G;|S: = 5]
= E[Rey1 +YRty2 + VRepz +...|Se = s]
=E[Re+1 +7(Req2 + YRey3 + .. .)|Se = 5]
= E[Re41 + 7Ge+1/|St = 5]
= E[Res1 +7V(5t41)|5: = 9]

Dr. Amey Pore (CSC415: Introduction to RL)

Lec 2: Planning by Dynamic Programming

January 14, 2026 5/ 60

Recap

Bellman Equation for MRPs (2)

V(s) = E[Re1 + 7 V/(St41)[Se = 5]

v(8) s
r
v(s') &
V(s) = 5\(,5) +) PEI)V(S)

!
Immediate reward N s

Discounted sum of future rewards

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026

Matrix Form of Bellman Equation for MRP

For finite state MRP, we can express V/(s) using a matrix equation

v\ (R (BG RG | (v
o= o |t : 5 :
Visn) Risw) P(51.|5N) o+ P(snlsn) Visw)
V=R+~PV

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 7 /60

R
Analytic Solution for Value of MRP

For finite state MRP, we can express V/(s) using a matrix equation

V =R+ PV
V-+9PV=R
(1—yP)V =R

V=(-+P)'R

@ Solving directly requires taking a matrix inverse ~ O(N3)
@ Requires that (I — yP) is invertible
@ Direct solutions only possible for small MRPs

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 8 /60

MDPs

Markov Decision Process (MDP)

A Markov decision process (MDP) is a Markov reward process with decisions. It is an
environment in which all states are Markov.

Definition
A Markov Decision Process is a tuple (S, .4, P,R,)
o Sis a (finite) set of Markov states s € S

o Ais a (finite) set of actions a € A

e P is dynamics/transition model for each action, P(s;+1 = s'|s; = s,a; = a)
o R is a reward function R(s; = s, a; = a) = E[r¢|s; = 5, a; = a]

@ Discount factor v € [0, 1]

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 9 / 60

Example: Mars Rover MDP

S1 S2 S3 Sa S5 Se 57

@ 2 deterministic actions

1000000 0100000
1000000 0010000
0100000 0001000

P(s'|s,a1)=]0 0 1 0 0 0 0 P(s'|s,a)=[0 0 0 0 1 0 0
0001000 0000 0T10
0000100 000000 1
0000010 000000 1

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 10 / 60

MDP Policies

Definition

A policy m is a distribution over actions given states,

m(a|s) = P[A: = a|S; = 5]

@ A policy fully defines the behaviour of an agent
@ MDP policies depend on the current state (not the history)

@ i.e. Policies are stationary (time-independent),

Ap ~ 7(-|Se), ¥t > 0

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026

MDP Policies (2)

Given an MDP M = (S, A, P,R,~) and a policy 7
The state sequence 51, S, ... is a Markov process (S, P™)
The state and reward sequence S, R»,Ss, ... is a Markov reward process (S, P™, R™,~)

where

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 12 / 60

Value Function under a Policy

Definition

The state-value function V7 (s) of an MDP is the expected return starting from state s, and
then following policy 7
V™ (s) = E;[Gt|st = s]

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 13 / 60

Bellman Expectation Equation

The state-value function can again be decomposed into immediate reward plus discounted
value of successor state, V™(s) = Ex[re41 + vV ™(st+1)|5t = §]

Un(s') <= 8

VT(s) = > m(als) |R(s,a) +v Y _ P(s'|s,a)V"(s")

acA s'eS

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 14 / 60

Optimal Value Function

Definition

The optimal state-value function V*(s) is the maximum value function over all policies

V*(s) = max V7(s)

™

@ The optimal value function gives the best possible performance in the MDP

@ An MDP is "solved” when we know the optimal value function

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026

MDPs

Optimal Policy

Define a partial ordering over policies

7> if V7(s) > V™ (s),Vs

For any Markov Decision Process

@ There exists an optimal policy 7* that is better than or equal to all other policies,
> 7,V

@ All optimal policies achieve the optimal value function,

VT (s) = V*(s)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 16 / 60

Finding an Optimal Policy

@ Compute the optimal policy
7 (s) = argmax V7 (s)
™

@ There exists a unique optimal value function

@ Optimal policy for a MDP in an infinite horizon problem is deterministic

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 17 / 60

Finding an Optimal Policy

@ Compute the optimal policy
7 (s) = argmax V7 (s)
s

@ There exists a unique optimal value function
e Optimal policy for a MDP in an infinite horizon problem (agent acts forever) is:

o Deterministic
o Stationary (does not depend on time step)
o Unique? Not necessarily, may have two policies with identical (optimal) values

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026

Bellman Optimality Equation

V*(s) = max R(s,a) + v Z P(s'|s,a)V*(s')
s'eS

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 19 / 60

Today's lecture: Recommendations

@ The content is theoretical, but fundamental to RL
@ Hence, if you don't ask questions, you will not understand

@ You might get a reward for asking questions

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 20 / 60

What is Dynamic Programming?

@ Dynamic: sequential or temporal component to the problem
@ Programming: optimising a “program”, i.e. a policy
e c.f. linear programming
@ A method for solving complex problems
@ By breaking them down into subproblems

o Solve the subproblems
o Combine solutions to subproblems

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 21 / 60

Dynamic Programming

Requirements for Dynamic Programming

Dynamic Programming is a very general solution method for problems which have two
properties:
o Optimal substructure
e Principle of optimality applies
o Optimal solution can be decomposed into subproblems
@ Overlapping subproblems

o Subproblems recur many times
e Solutions can be cached and reused

o MDPs satisfy both properties

o Bellman equation gives recursive decomposition
o Value function stores and reuses solutions

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026

Dynamic Programming

Planning by Dynamic Programming

Dynamic programming assumes full knowledge of the MDP

It is used for planning in an MDP

For prediction:
o Input: MDP (S, A,P,R,~) and policy 7
o or: MRP (8, P™, R™,~)
o Output: value function V™

@ Or for control:

o Input: MDP (S, A, P,R,v)

o Output: optimal value function V*

e and: optimal policy 7*

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 23 / 60

Dynamic Programming

Iterative Policy Evaluation

Problem: evaluate a given policy 7

Solution: iterative application of Bellman expectation backup
V1—>V2—>"-—>Vﬂ—

Using synchronous backups,

o At each iteration k +1

o For all statess € S

o Update Vii1(s) from Vi(s')

o where s’ is a successor state of s

e 6 o o

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 24 / 60

Dynamic Programming

Iterative Policy Evaluation 2

vg(s') 8’

Vii1(s) = Z m(als) (R(s, a)+ry Z P(s']s, a) Vk(s')>

acA s'eS

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 25 / 60

Dynamic Programming

Evaluating a Random Policy in the Small Gridworld

4 |5 s |7 Famech
on all transitions

ion
Bctions 12 13 |14

Undiscounted episodic MDP (v = 1)
Nonterminal states 1,...,14
One terminal state (shown twice as shaded squares)
Actions leading out of the grid leave state unchanged
Reward is —1 until the terminal state is reached
Agent follows uniform random policy
w(nl-) = m(el) = (s|-) = m(w|-) = 0.25

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 26 / 60

Dynamic Programming

lterative Policy Evaluation in Small Gridworld

Uy, for the Greedy Policy
Random Palicy wrt. Up
0.0] 00| 0.0 0.0 1
. 0.0] 0.0] 0.0] 0.0 e random
0.0] 0.0 0.0] 0.0 2 [t [DO}ICy
0.0] 00| 00| 0.0 ebleb
0.0|-1.0/-1.0[-1.0 — |l
k=1 a0l-10]-10l00 H s
a0l-10]-10l00 slepolebs|
-1.0)-1.0]-1.0{ 0.0 ¢ i e Ml
0.0|-1.7]-2.0[-2.0 — | |
k=2 -1.7]-2.0/-20[-20 Pl s
- 20f-20]-20[-17 | o
20|-20[-1.7] 0.0 | - -

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2

Dynamic Programming

lterative Policy Evaluation in Small Gridworld (2)

0.0|-24]-29[30 — | |q
; 24]209]30[20 T ls |
k=3 e
2.9|-3.0[-29]-2.4 el
-3.0[-2.9]-24] 00 rEE
0.0[-6.1{-84{-9.0 = = Y
k=10 -6.1(-7.7-8.4]-8.4 Pl e | oplt_imal
= olic
-8.4/-8.4]-7.7]-6.1 P L pf POACY
9.0|-84]-6.1 0.0 Ll) -
0.0]-14.|-20f-22. - = g
-14]-18 |20 [-20. tld o |
k: o0 T L,
20.]-20]-18-14. ol
2202014 00 L - -

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14,

Dynamic Programming

Homework Exercise: MDP 1 lteration of Policy Evaluation

Dynamics: P(sg|se, a1) = 0.5, P(s7|se,a1) = 0.5, ...

Reward: for all actions, +1 in state s;, +10 in state s7, 0 otherwise
Let 7(s) = a1Vs, assume Vj =[1,0,0,0,0,0,10] and k =1,7v=10.5
Compute Vi 1(s6)

e 6 o6 o

See answer at the end of the slide deck. Work this out yourself, if you'd like to practice. Then
check the answer.

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 29 / 60

Dynamic Programming

How to Improve a Policy

Given a policy 7

o Evaluate the policy 7
VW(S) =]E[Rt+]_ + ’th+2 + ... |St = S]

o Improve the policy by acting greedily with respect to V™

7' = greedy(V7)

In Small Gridworld improved policy was optimal, 7/ = 7*

In general, need more iterations of improvement / evaluation

But this process of policy iteration always converges to 7*

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026

Dynamic Programming

Policy lteration

evaluation
V—yT
T V
St?,rt;?g :: —>gready(V)
improvement
" .
@ Policy evaluation Estimate V™ .
S
Iterative policy evaluation T vV

@ Policy improvement Generate n/ > 7
Greedy policy improvement

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 31 /60

New Definition: State-Action Value Q

@ State-action value of a policy

Q™ (s,a) = R(s,a) +~ Z P(s'|s,a)V™(s)

s'eS

@ Take action a, then follow the policy 7

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 32 /60

Dynamic Programming

Policy Improvement

@ Compute state-action value of a policy ;
o Forsin S and ain A:

Q™ (s,a) = R(s,a) + Z P(s'|s,a)V™i(s")

s’eS

o Compute new policy 741, for all s € S

mir1(s) = argmax Q™ (s,a) Vse S

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 33 /60

MDP Policy Iteration (PI)

@ Seti=0

o Initialize mo(s) randomly for all states s

e While i == 0 or ||m; — mj_1||1 > 0 (L1-norm, measures if the policy changed for any
state):

o V7i + MDP V function policy evaluation of 7;
e Tjy1 < Policy improvement
e i=i+1

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 34 / 60

Dynamic Programming

Delving Deeper Into Policy Improvement Step

QT (s,a) = R(s,a) +7) _ P(s|s.a)V™(s)

s'eS

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 35 / 60

Dynamic Programming

Delving Deeper Into Policy Improvement Step

QT (s,a) = R(s,a) +7) _ P(s|s.a)V™(s)

s'eS
max Q" (s,) > R(s,mi(s)) +7) P(s]s,mi(s))V™(s') = V7i(s)
s'eS
mit1(s) = argmax Q™ (s, a)

@ Suppose we take mj11(s) for one action, then follow m; forever
o Our expected sum of rewards is at least as good as if we had always followed 7;

@ But new proposed policy is to always follow 7 ...

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 36 / 60

Dynamic Programming

Monotonic Improvement in Policy

V7i(s) < max Q™ (s, a)

= max R(s,a) + v Z P(s'|s,a)VTi(s)
s'eS

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 37 / 60

Dynamic Programming

Proof: Monotonic Improvement in Policy
VTi(s) < max Q™ (s, a)

max R(s, a) + v Z P(s'|s,a)V™i(s")

s'eS

= R(s, mi+1(s)) + v Z P(s'|s, mi+1(s)) V™ (s") // by the definition of ;11

s’eS
< R(syma(s) 47 3 Pl () (max @75,))
s'es
= R(s,mit1(s)) + v Z P(s'|s, mi41(s))
s’eS
<R(S/77Tf+1)+) Pl misa(s))Vwi(sll))
s’’es

= VYTt (S)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 38 / 60

Course logistics

Course logistics

© First lab tomorrow: dynamic programming, due date on Jan 20th at 11:59pm.

o The submission will be on MarkUs.
e Submit .ipynb notebook.

@ The office hours time for the TA has changed to Tuesday 5:15pm to 6:15pm.
o Link to the zoom will be added on the home page Quercus.
© Mid-term exam will take place on Jan 29th covering the first 4 lectures.

o Important: We will need to exceed the tutorial time by 30mins. It is a 90 mins exam.
o | will add sample questions on Piazza later today.

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 39 /

Think Pair Wise 2

o If policy doesn’t change, can it ever change again?
e Yes / No / Not sure

o Is there a maximum number of iterations of policy iteration?
o Yes / No / Not sure

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 40 / 60

Course logistics

Break!

Dr. Amey Pore (CSC415: Introduction to RL) Planning by Dynamic Programming January 14, 2

Outline

@ Recap

@ Introduction to Dynamic Programming
© Policy lteration

© Value Iteration

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14,

Principle of Optimality

Any optimal policy can be subdivided into two components:

@ An optimal first action A,

@ Followed by an optimal policy from successor state S’

Theorem (Principle of Optimality)

A policy 7(a|s) achieves the optimal value from state s, V™(s) = V*(s), if and only if
o For any state s’ reachable from s

e 7 achieves the optimal value from state s’, V™ (s") = V*(s')

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 43 / 60

Value Iteration

Deterministic Value lteration

If we know the solution to subproblems V*(s’)

(]

Then solution V*(s) can be found by one-step lookahead

V* R P / V* /
(s) ¢ max (sva)+7§€;s (s'ls,a)V*(s)

The idea of value iteration is to apply these updates iteratively

Intuition: start with final rewards and work backwards

Still works with loopy, stochastic MDPs

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 44 / 60

Example: Shortest Path

- - ¢ ° ¢ . " ! N . ; “ *
0|0 oo Al E] 2|2 | 2
o a o a -1 -1 -1 -1 2 2 -2 -2
oo |o o 1 T I 2 |2 |2 |2
Problem vy Vo Va
. ! ‘ N . " N N . " N N . ' ” N
1|2]3| 12| 4|4 4|2 | a | -4 4|2 |3 | 4
2 |3 |-3]|-3 2| 2| 4|4 2| 2|4 |s 2| a3|4 |5
-3 -3 3 -3 -3 -4 -4 -4 -3 -4 -5 -5 3 4 -5 -5
Vg Vg Vg v,

Dr. Amey Pore (CSC415: Introduction to RL) Planning by Dynamic Programmi January 14, 2

Value Iteration

Value lteration

Problem: find optimal policy 7

Solution: iterative application of Bellman optimality backup
Vi Vo— - =V

Using synchronous backups

o At each iteration kK +1
o For all statess € S
o Update Vii1(s) from Vi(s')

Convergence to V* will be proven later

Unlike policy iteration, there is no explicit policy

Intermediate value functions may not correspond to any policy

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 46 / 60

Value lteration (2)

vi(s') 1 8

V, = R P(s'|s, a) Vi(s'
() = max (s,a)ﬂs;s (s,) Vi(s')

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 47 / 60

Value Iteration

Example of Value lteration in Practice

https://artint.info/demos/mdp/vi.html

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 48 / 60

https://artint.info/demos/mdp/vi.html

Going Back to Value lteration (VI)

o Set k=1
o Initialize Vp(s) = 0 for all states s

@ Loop until convergence: (for ex. ||Vii1 — Villoo <€)
o For each state s

Viti(s) = max R(s,a) +~ Z P(s'|s,a) Vi(s")

s’eS
@ To extract optimal policy if can act for k + 1 more steps,

7(s) = arg max [s,a)+7 Z s'ls,a)Vir1(s)]

s'eS

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 49 / 60

Value Iteration

Synchronous Dynamic Programming Algorithms

Problem Bellman Equation Algorithm
Prediction | Bellman Expectation Equation | Iterative Policy Evaluation
Control Bellman Expectation Equation | Policy Iteration
+ Greedy Policy Improvement
Control Bellman Optimality Equation | Value lteration

Algorithms are based on state-value function V™ (s) or V*(s)
Complexity O(mn?) per iteration, for m actions and n states

Could also apply to action-value function Q™ (s, a) or Q*(s, a)

e 6 o6 o

Complexity O(m?n?) per iteration

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 50 / 60

Value Iteration

Value vs Policy lteration

Policy Iteration Value Iteration

Algorithm Iterates through evaluation and | lterates through Bellman opti-
improvement mality updates

Updates Solves V™ for a fixed policy Updates V/(s) using max over a

Convergence | Fewer iterations, but each is | More iterations, but each is
costly simple

Output Directly improves the policy Extracts policy from optimal

values

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026

What You Should Know

Define MP, MRP, MDP, Bellman equation, model, Q-value, policy
Be able to implement

o Value lteration
o Policy lteration

Give pros and cons of different policy evaluation approaches

Be able to prove contraction properties

o Limitations of presented approaches and Markov assumptions

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 52 / 60

Value Iteration

Some Technical Questions

How do we know that value iteration converges to V*?
Or that iterative policy evaluation converges to V77
And therefore that policy iteration converges to V*7

Is the solution unique?

How fast do these algorithms converge?

These questions are resolved by contraction mapping theorem

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026

Value Iteration

Value Function Space

Consider the vector space V over value functions

There are |S| dimensions

Each point in this space fully specifies a value function V(s)
What does a Bellman backup do to points in this space?

We will show that it brings value functions closer

And therefore the backups must converge on a unique solution

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026

Value Iteration

Value Function co-Norm

@ We will measure distance between state-value functions U and V by the co-norm

@ i.e. the largest difference between state values,

IU = Vlloo = max|U(s) — V(s)|

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 55 / 60

Value Iteration

Bellman Expectation Backup is a Contraction

@ Define the Bellman expectation backup operator T7,
T (V)=R"+~P"V
o This operator is a y-contraction, i.e. it makes value functions closer by at least 7,

IT7(U) = T"(V)lloo = [I(RT +~P"U) = (RT +7P" V)|l

= [7P™(U = V)l
S YP lollU = Voo
<MV =Vl

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 56 /

Value Iteration

Contraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an operator T(V), where T is a
~-contraction,

@ T converges to a unique fixed point

@ At a linear convergence rate of ~y

Dr. Amey Pore (CSC415: Introduction to RL)

Lec 2: Planning by Dynamic Programming

January 14, 2026 57 / 60

Value Iteration

Convergence of Iter. Policy Evaluation and Policy Iteration

The Bellman expectation operator T™ has a unique fixed point
V7™ is a fixed point of T™ (by Bellman expectation equation)
By contraction mapping theorem

Iterative policy evaluation converges on V™

e 6 6 o o

Policy iteration converges on V*

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 58 / 60

Bellman Optimality Backup is a Contraction

@ Define the Bellman optimality backup operator T*,
T*(V) = maxR? + ~P?V
acA
@ This operator is a -y-contraction, i.e. it makes value functions closer by at least ~ (similar

to previous proof)
IT*(U) = T*(V)lloo <7IIU = V]l

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 59 / 60

Value Iteration

Convergence of Value Iteration

@ The Bellman optimality operator T* has a unique fixed point
e V*is a fixed point of T* (by Bellman optimality equation)
@ By contraction mapping theorem

@ Value iteration converges on V*

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Value Iteration

Thank you!

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 20

Asynchronous Dynamic Programming

Asynchronous Dynamic Programming

DP methods described so far used synchronous backups
i.e. all states are backed up in parallel

Asynchronous DP backs up states individually, in any order
For each selected state, apply the appropriate backup

Can significantly reduce computation

Guaranteed to converge if all states continue to be selected

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

@ In-place dynamic programming
o Perioritised sweeping

@ Real-time dynamic programming

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

In-Place Dynamic Programming

@ Synchronous value iteration stores two copies of value function
for all sin &

Vnew(s) — MaXaed (Rﬁ + 7y ZS/GS P:S/ Vold(sl))
Vold <= Vnew

@ In-place value iteration only stores one copy of value function
forall sin &

v(s) ¢ maxaen (R2+ 9> ges PLv(s))

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming

January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Prioritised Sweeping

@ Use magnitude of Bellman error to guide state selection, e.g.
‘maxaeA (Rg +9 D ges Pa v(s')) — v(s)!

Backup the state with the largest remaining Bellman error
Update Bellman error of affected states after each backup

Requires knowledge of reverse dynamics (predecessor states)

Can be implemented efficiently by maintaining a priority queue

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Real-Time Dynamic Programming

Idea: only states that are relevant to agent

Use agent's experience to guide the selection of states
After each time-step S, A, Ria1

Backup the state S;

V(St) <— MaXzc A (Rgt + Y ZS/GS Pgts/ V(Sl))

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Full-Width Backups

@ DP uses full-width backups
@ For each backup (sync or async) Vit (s) « s

o Every successor state and action is considered

o Using knowledge of the MDP transitions and reward function
e DP is effective for medium-sized problems (millions of states)
o For large problems DP suffers Bellman's curse of a

dimensionality
o Number of states n = |S| grows exponentially with number of
state variables
/ /

@ Even one backup can be too expensive vi(s') s

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Sample Backups

In subsequent lectures we will consider sample backups
Using sample rewards and sample transitions (S, A, R, S’)

Instead of reward function R and transition dynamics P

Advantages:
e Model-free: no advance knowledge of MDP required
o Breaks the curse of dimensionality through sampling
o Cost of backup is constant, independent of n = |S|

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Approximate Dynamic Programming

@ Approximate the value function

e Using a function approximator V(s,w)

@ Apply dynamic programming to (-, w)

o e.g. Fitted Value lteration repeats at each iteration k,

o Sample states Scs
o For each state s € S, estimate target value using Bellman optimality equation,

Vk(s) = maxae 4 (R§ + 'YZs'es Pjs,O(s’,wk))

e Train next value function (-, wy1) using targets {(s, Vk(s))}

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026

Asynchronous Dynamic Programming

Homework Solution

Dynamics: P(sg|se, a1) = 0.5, P(s7|ss,a1) = 0.5, ...

Reward: for all actions, +1 in state s;, +10 in state s7, 0 otherwise
Let 7(s) = a1 Vs, assume V, =[1,0,0,0,0,0,10] and k=1, v =0.5
Compute Vi 1(ss)

Vir1(ss) = R(se) +7 Y P(s'|s6, a1) Vi(s')
s'eS
=0+4+0.5x(0.5x10+0.5x0)
=25

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Think pair wise 2: Explanation of Policy Not Changing

@ Suppose for all s € S, 7iy1(s) = 7i(s)
@ Then for all s € §, Q™+1(s,a) = Q™ (s, a)

Recall policy improvement step:
o Qmi(s,a) = R(s,a) + 7Y gcs P(s'ls,a)VTi(s")
o mit1(s) = argmax, Q™ (s, a)

o miya(s) = argmax, Q™+ (s, a) = arg max, Q™ (s, a)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Opportunities for Out-of-Class Practice

@ Does the initialization of values in value iteration impact anything?

@ |s the value of the policy extracted from value iteration at each round guaranteed to
monotonically improve (if executed in the real infinite horizon problem), like policy
iteration?

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

	Outline
	Recap
	MDPs
	Dynamic Programming
	Course logistics
	Value Iteration
	Asynchronous Dynamic Programming

