
CSC415: Introduction to Reinforcement Learning

Lecture 2: Planning by Dynamic Programming

Dr. Amey Pore

Winter 2026

January 14, 2026

Structure and content adapted from David Silver’s and Emma Brunskill’s course on Introduction to RL.

Think Pair Wise 1

In a Markov decision process, a large discount

factor γ means that short term rewards are much
more influential than long term rewards.

Answers: • True • False • Don’t know 7 discrete states (location of rover)

2 actions: Left or Right

How many deterministic policies are there?

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 2 / 60

Outline

Outline

1 Recap

2 MDPs

3 Introduction to Dynamic Programming

4 Policy Iteration

5 Course logistics

6 Value Iteration

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 3 / 60

Recap

Return & Value Function

Definition of Horizon (H)
Number of time steps in each episode
Can be infinite
Otherwise called finite Markov reward process

Definition of Return, Gt (for a MRP)
Discounted sum of rewards from time step t to horizon H

Gt = rt + γrt+1 + γ2rt+2 + · · ·+ γH−1rt+H−1

Definition of State Value Function, V (s) (for a MRP)
Expected return from starting in state s

V (s) = E[Gt |St = s] = E[rt + γrt+1 + γ2rt+2 + · · ·+ γH−1rt+H−1|St = s]

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 4 / 60

Recap

Bellman Equation for MRPs

The value function can be decomposed into two parts:

immediate reward Rt+1

discounted value of successor state γV (St+1)

V (s) = E[Gt |St = s]

= E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s]

= E[Rt+1 + γ(Rt+2 + γRt+3 + . . .)|St = s]

= E[Rt+1 + γGt+1|St = s]

= E[Rt+1 + γV (St+1)|St = s]

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 5 / 60

Recap

Bellman Equation for MRPs (2)

V (s) = E[Rt+1 + γV (St+1)|St = s]

V (s) = R(s)︸︷︷︸
Immediate reward

+ γ
∑
s′∈S

P(s ′|s)V (s ′)︸ ︷︷ ︸
Discounted sum of future rewards

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 6 / 60

Recap

Matrix Form of Bellman Equation for MRP

For finite state MRP, we can express V (s) using a matrix equation

V (s1)
...

V (sN)

 =

R(s1)
...

R(sN)

+ γ


P(s1|s1) · · · P(sN |s1)
P(s1|s2) · · · P(sN |s2)

...
. . .

...
P(s1|sN) · · · P(sN |sN)


V (s1)

...
V (sN)



V = R+ γPV

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 7 / 60

Recap

Analytic Solution for Value of MRP

For finite state MRP, we can express V (s) using a matrix equation

V = R+ γPV

V − γPV = R

(I− γP)V = R

V = (I− γP)−1R

Solving directly requires taking a matrix inverse ∼ O(N3)

Requires that (I− γP) is invertible

Direct solutions only possible for small MRPs

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 8 / 60

MDPs

Markov Decision Process (MDP)

A Markov decision process (MDP) is a Markov reward process with decisions. It is an
environment in which all states are Markov.

Definition

A Markov Decision Process is a tuple (S,A,P,R, γ)
S is a (finite) set of Markov states s ∈ S
A is a (finite) set of actions a ∈ A
P is dynamics/transition model for each action, P(st+1 = s ′|st = s, at = a)

R is a reward function R(st = s, at = a) = E[rt |st = s, at = a]

Discount factor γ ∈ [0, 1]

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 9 / 60

MDPs

Example: Mars Rover MDP

2 deterministic actions

P(s ′|s, a1) =



1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


P(s ′|s, a2) =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 10 / 60

MDPs

MDP Policies

Definition

A policy π is a distribution over actions given states,

π(a|s) = P[At = a|St = s]

A policy fully defines the behaviour of an agent

MDP policies depend on the current state (not the history)

i.e. Policies are stationary (time-independent),

At ∼ π(·|St), ∀t > 0

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 11 / 60

MDPs

MDP Policies (2)

Given an MDPM = ⟨S,A,P,R, γ⟩ and a policy π

The state sequence S1, S2, . . . is a Markov process ⟨S,Pπ⟩
The state and reward sequence S1,R2, S2, . . . is a Markov reward process ⟨S,Pπ,Rπ, γ⟩
where

Rπ(s) =
∑
a∈A

π(a|s)R(s, a)

Pπ(s ′|s) =
∑
a∈A

π(a|s)P(s ′|s, a)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 12 / 60

MDPs

Value Function under a Policy

Definition

The state-value function V π(s) of an MDP is the expected return starting from state s, and
then following policy π

V π(s) = Eπ[Gt |st = s]

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 13 / 60

MDPs

Bellman Expectation Equation

The state-value function can again be decomposed into immediate reward plus discounted
value of successor state, V π(s) = Eπ[rt+1 + γV π(st+1)|st = s]

V π(s) =
∑
a∈A

π(a|s)

[
R(s, a) + γ

∑
s′∈S

P(s ′|s, a)V π(s ′)

]

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 14 / 60

MDPs

Optimal Value Function

Definition

The optimal state-value function V ∗(s) is the maximum value function over all policies

V ∗(s) = max
π

V π(s)

The optimal value function gives the best possible performance in the MDP

An MDP is ”solved” when we know the optimal value function

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 15 / 60

MDPs

Optimal Policy

Define a partial ordering over policies

π ≥ π′ if V π(s) ≥ V π′
(s),∀s

Theorem

For any Markov Decision Process

There exists an optimal policy π∗ that is better than or equal to all other policies,
π∗ ≥ π,∀π
All optimal policies achieve the optimal value function,

V π∗
(s) = V ∗(s)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 16 / 60

MDPs

Finding an Optimal Policy

Compute the optimal policy
π∗(s) = argmax

π
V π(s)

There exists a unique optimal value function

Optimal policy for a MDP in an infinite horizon problem is deterministic

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 17 / 60

MDPs

Finding an Optimal Policy

Compute the optimal policy
π∗(s) = argmax

π
V π(s)

There exists a unique optimal value function

Optimal policy for a MDP in an infinite horizon problem (agent acts forever) is:

Deterministic
Stationary (does not depend on time step)
Unique? Not necessarily, may have two policies with identical (optimal) values

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 18 / 60

MDPs

Bellman Optimality Equation

V ∗(s) = max
a

R(s, a) + γ
∑
s′∈S

P(s ′|s, a)V ∗(s ′)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 19 / 60

MDPs

Today’s lecture: Recommendations

The content is theoretical, but fundamental to RL

Hence, if you don’t ask questions, you will not understand

You might get a reward for asking questions

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 20 / 60

Dynamic Programming

What is Dynamic Programming?

Dynamic: sequential or temporal component to the problem

Programming: optimising a “program”, i.e. a policy

c.f. linear programming

A method for solving complex problems

By breaking them down into subproblems

Solve the subproblems
Combine solutions to subproblems

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 21 / 60

Dynamic Programming

Requirements for Dynamic Programming

Dynamic Programming is a very general solution method for problems which have two
properties:

Optimal substructure
Principle of optimality applies
Optimal solution can be decomposed into subproblems

Overlapping subproblems
Subproblems recur many times
Solutions can be cached and reused

MDPs satisfy both properties
Bellman equation gives recursive decomposition
Value function stores and reuses solutions

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 22 / 60

Dynamic Programming

Planning by Dynamic Programming

Dynamic programming assumes full knowledge of the MDP

It is used for planning in an MDP

For prediction:
Input: MDP ⟨S,A,P,R, γ⟩ and policy π
or: MRP ⟨S,Pπ,Rπ, γ⟩
Output: value function V π

Or for control:
Input: MDP ⟨S,A,P,R, γ⟩
Output: optimal value function V ∗

and: optimal policy π∗

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 23 / 60

Dynamic Programming

Iterative Policy Evaluation

Problem: evaluate a given policy π

Solution: iterative application of Bellman expectation backup

V1 → V2 → · · · → Vπ

Using synchronous backups,

At each iteration k + 1
For all states s ∈ S
Update Vk+1(s) from Vk(s

′)
where s ′ is a successor state of s

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 24 / 60

Dynamic Programming

Iterative Policy Evaluation 2

Vk+1(s) =
∑
a∈A

π(a|s)

(
R(s, a) + γ

∑
s′∈S

P(s ′|s, a)Vk(s
′)

)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 25 / 60

Dynamic Programming

Evaluating a Random Policy in the Small Gridworld

Undiscounted episodic MDP (γ = 1)

Nonterminal states 1, . . . , 14

One terminal state (shown twice as shaded squares)

Actions leading out of the grid leave state unchanged

Reward is −1 until the terminal state is reached

Agent follows uniform random policy

π(n|·) = π(e|·) = π(s|·) = π(w |·) = 0.25

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 26 / 60

Dynamic Programming

Iterative Policy Evaluation in Small Gridworld

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 27 / 60

Dynamic Programming

Iterative Policy Evaluation in Small Gridworld (2)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 28 / 60

Dynamic Programming

Homework Exercise: MDP 1 Iteration of Policy Evaluation

Dynamics: P(s6|s6, a1) = 0.5,P(s7|s6, a1) = 0.5, . . .

Reward: for all actions, +1 in state s1, +10 in state s7, 0 otherwise

Let π(s) = a1∀s, assume Vk = [1, 0, 0, 0, 0, 0, 10] and k = 1, γ = 0.5

Compute Vk+1(s6)

See answer at the end of the slide deck. Work this out yourself, if you’d like to practice. Then
check the answer.

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 29 / 60

Dynamic Programming

How to Improve a Policy

Given a policy π

Evaluate the policy π
V π(s) = E[Rt+1 + γRt+2 + . . . |St = s]

Improve the policy by acting greedily with respect to V π

π′ = greedy(V π)

In Small Gridworld improved policy was optimal, π′ = π∗

In general, need more iterations of improvement / evaluation

But this process of policy iteration always converges to π∗

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 30 / 60

Dynamic Programming

Policy Iteration

Policy evaluation Estimate V π

Iterative policy evaluation

Policy improvement Generate π′ ≥ π
Greedy policy improvement

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 31 / 60

Dynamic Programming

New Definition: State-Action Value Q

State-action value of a policy

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

P(s ′|s, a)V π(s ′)

Take action a, then follow the policy π

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 32 / 60

Dynamic Programming

Policy Improvement

Compute state-action value of a policy πi
For s in S and a in A:

Qπi (s, a) = R(s, a) + γ
∑
s′∈S

P(s ′|s, a)V πi (s ′)

Compute new policy πi+1, for all s ∈ S

πi+1(s) = argmax
a

Qπi (s, a) ∀s ∈ S

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 33 / 60

Dynamic Programming

MDP Policy Iteration (PI)

Set i = 0

Initialize π0(s) randomly for all states s

While i == 0 or ||πi − πi−1||1 > 0 (L1-norm, measures if the policy changed for any
state):

V πi ← MDP V function policy evaluation of πi

πi+1 ← Policy improvement
i = i + 1

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 34 / 60

Dynamic Programming

Delving Deeper Into Policy Improvement Step

Qπi (s, a) = R(s, a) + γ
∑
s′∈S

P(s ′|s, a)V πi (s ′)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 35 / 60

Dynamic Programming

Delving Deeper Into Policy Improvement Step

Qπi (s, a) = R(s, a) + γ
∑
s′∈S

P(s ′|s, a)V πi (s ′)

max
a

Qπi (s, a) ≥ R(s, πi (s)) + γ
∑
s′∈S

P(s ′|s, πi (s))V πi (s ′) = V πi (s)

πi+1(s) = argmax
a

Qπi (s, a)

Suppose we take πi+1(s) for one action, then follow πi forever

Our expected sum of rewards is at least as good as if we had always followed πi

But new proposed policy is to always follow πi+1 . . .

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 36 / 60

Dynamic Programming

Monotonic Improvement in Policy

V πi (s) ≤ max
a

Qπi (s, a)

= max
a

R(s, a) + γ
∑
s′∈S

P(s ′|s, a)V πi (s ′)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 37 / 60

Dynamic Programming

Proof: Monotonic Improvement in Policy
V πi (s) ≤ max

a
Qπi (s, a)

= max
a

R(s, a) + γ
∑
s′∈S

P(s ′|s, a)V πi (s ′)

= R(s, πi+1(s)) + γ
∑
s′∈S

P(s ′|s, πi+1(s))V
πi (s ′) // by the definition of πi+1

≤ R(s, πi+1(s)) + γ
∑
s′∈S

P(s ′|s, πi+1(s))

(
max
a′

Qπi (s ′, a′)

)
= R(s, πi+1(s)) + γ

∑
s′∈S

P(s ′|s, πi+1(s))(
R(s ′, πi+1(s

′)) + γ
∑
s′′∈S

P(s ′′|s ′, πi+1(s
′))V πi (s ′′)

)
...

= V πi+1(s)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 38 / 60

Course logistics

Course logistics

1 First lab tomorrow: dynamic programming, due date on Jan 20th at 11:59pm.

The submission will be on MarkUs.
Submit .ipynb notebook.

2 The office hours time for the TA has changed to Tuesday 5:15pm to 6:15pm.

Link to the zoom will be added on the home page Quercus.

3 Mid-term exam will take place on Jan 29th covering the first 4 lectures.

Important: We will need to exceed the tutorial time by 30mins. It is a 90 mins exam.
I will add sample questions on Piazza later today.

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 39 / 60

Course logistics

Think Pair Wise 2

If policy doesn’t change, can it ever change again?
Yes / No / Not sure

Is there a maximum number of iterations of policy iteration?
Yes / No / Not sure

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 40 / 60

Course logistics

Break!

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 41 / 60

Value Iteration

Outline

1 Recap

2 Introduction to Dynamic Programming

3 Policy Iteration

4 Value Iteration

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 42 / 60

Value Iteration

Principle of Optimality

Any optimal policy can be subdivided into two components:

An optimal first action A∗

Followed by an optimal policy from successor state S ′

Theorem (Principle of Optimality)

A policy π(a|s) achieves the optimal value from state s, V π(s) = V ∗(s), if and only if

For any state s ′ reachable from s

π achieves the optimal value from state s ′, V π(s ′) = V ∗(s ′)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 43 / 60

Value Iteration

Deterministic Value Iteration

If we know the solution to subproblems V ∗(s ′)

Then solution V ∗(s) can be found by one-step lookahead

V ∗(s)← max
a∈A

[
R(s, a) + γ

∑
s′∈S

P(s ′|s, a)V ∗(s ′)

]

The idea of value iteration is to apply these updates iteratively

Intuition: start with final rewards and work backwards

Still works with loopy, stochastic MDPs

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 44 / 60

Value Iteration

Example: Shortest Path

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 45 / 60

Value Iteration

Value Iteration

Problem: find optimal policy π

Solution: iterative application of Bellman optimality backup

V1 → V2 → · · · → V ∗

Using synchronous backups

At each iteration k + 1
For all states s ∈ S
Update Vk+1(s) from Vk(s

′)

Convergence to V ∗ will be proven later

Unlike policy iteration, there is no explicit policy

Intermediate value functions may not correspond to any policy

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 46 / 60

Value Iteration

Value Iteration (2)

Vk+1(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

P(s ′|s, a)Vk(s
′)

]

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 47 / 60

Value Iteration

Example of Value Iteration in Practice

https://artint.info/demos/mdp/vi.html

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 48 / 60

https://artint.info/demos/mdp/vi.html

Value Iteration

Going Back to Value Iteration (VI)

Set k = 1

Initialize V0(s) = 0 for all states s

Loop until convergence: (for ex. ||Vk+1 − Vk ||∞ ≤ ϵ)

For each state s

Vk+1(s) = max
a

[
R(s, a) + γ

∑
s′∈S

P(s ′|s, a)Vk(s
′)

]
To extract optimal policy if can act for k + 1 more steps,

π(s) = argmax
a

[
R(s, a) + γ

∑
s′∈S

P(s ′|s, a)Vk+1(s
′)

]

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 49 / 60

Value Iteration

Synchronous Dynamic Programming Algorithms

Problem Bellman Equation Algorithm

Prediction Bellman Expectation Equation Iterative Policy Evaluation

Control Bellman Expectation Equation Policy Iteration
+ Greedy Policy Improvement

Control Bellman Optimality Equation Value Iteration

Algorithms are based on state-value function V π(s) or V ∗(s)

Complexity O(mn2) per iteration, for m actions and n states

Could also apply to action-value function Qπ(s, a) or Q∗(s, a)

Complexity O(m2n2) per iteration

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 50 / 60

Value Iteration

Value vs Policy Iteration

Policy Iteration Value Iteration
Algorithm Iterates through evaluation and

improvement
Iterates through Bellman opti-
mality updates

Updates Solves V π for a fixed policy Updates V (s) using max over a

Convergence Fewer iterations, but each is
costly

More iterations, but each is
simple

Output Directly improves the policy Extracts policy from optimal
values

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 51 / 60

Value Iteration

What You Should Know

Define MP, MRP, MDP, Bellman equation, model, Q-value, policy

Be able to implement

Value Iteration
Policy Iteration

Give pros and cons of different policy evaluation approaches

Be able to prove contraction properties

Limitations of presented approaches and Markov assumptions

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 52 / 60

Value Iteration

Some Technical Questions

How do we know that value iteration converges to V ∗?

Or that iterative policy evaluation converges to V π?

And therefore that policy iteration converges to V ∗?

Is the solution unique?

How fast do these algorithms converge?

These questions are resolved by contraction mapping theorem

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 53 / 60

Value Iteration

Value Function Space

Consider the vector space V over value functions

There are |S| dimensions

Each point in this space fully specifies a value function V (s)

What does a Bellman backup do to points in this space?

We will show that it brings value functions closer

And therefore the backups must converge on a unique solution

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 54 / 60

Value Iteration

Value Function ∞-Norm

We will measure distance between state-value functions U and V by the ∞-norm

i.e. the largest difference between state values,

∥U − V ∥∞ = max
s∈S
|U(s)− V (s)|

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 55 / 60

Value Iteration

Bellman Expectation Backup is a Contraction

Define the Bellman expectation backup operator T π,

Tπ(V) = Rπ + γPπV

This operator is a γ-contraction, i.e. it makes value functions closer by at least γ,

∥Tπ(U)− T π(V)∥∞ = ∥(Rπ + γPπU)− (Rπ + γPπV)∥∞
= ∥γPπ(U − V)∥∞
≤ ∥γPπ∥∞∥U − V ∥∞
≤ γ∥U − V ∥∞

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 56 / 60

Value Iteration

Contraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an operator T (V), where T is a
γ-contraction,

T converges to a unique fixed point

At a linear convergence rate of γ

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 57 / 60

Value Iteration

Convergence of Iter. Policy Evaluation and Policy Iteration

The Bellman expectation operator T π has a unique fixed point

V π is a fixed point of T π (by Bellman expectation equation)

By contraction mapping theorem

Iterative policy evaluation converges on V π

Policy iteration converges on V ∗

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 58 / 60

Value Iteration

Bellman Optimality Backup is a Contraction

Define the Bellman optimality backup operator T ∗,

T ∗(V) = max
a∈A
Ra + γPaV

This operator is a γ-contraction, i.e. it makes value functions closer by at least γ (similar
to previous proof)

∥T ∗(U)− T ∗(V)∥∞ ≤ γ∥U − V ∥∞

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 59 / 60

Value Iteration

Convergence of Value Iteration

The Bellman optimality operator T ∗ has a unique fixed point

V ∗ is a fixed point of T ∗ (by Bellman optimality equation)

By contraction mapping theorem

Value iteration converges on V ∗

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Value Iteration

Thank you!

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Asynchronous Dynamic Programming

DP methods described so far used synchronous backups

i.e. all states are backed up in parallel

Asynchronous DP backs up states individually, in any order

For each selected state, apply the appropriate backup

Can significantly reduce computation

Guaranteed to converge if all states continue to be selected

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

In-place dynamic programming

Prioritised sweeping

Real-time dynamic programming

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

In-Place Dynamic Programming

Synchronous value iteration stores two copies of value function

for all s in S
vnew (s) ← maxa∈A

(
Ra

s + γ
∑

s′∈S Pa
ss′vold(s

′)
)

vold ← vnew

In-place value iteration only stores one copy of value function

for all s in S
v(s) ← maxa∈A

(
Ra

s + γ
∑

s′∈S Pa
ss′v(s

′)
)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Prioritised Sweeping

Use magnitude of Bellman error to guide state selection, e.g.∣∣maxa∈A
(
Ra

s + γ
∑

s′∈S Pa
ss′v(s

′)
)
− v(s)

∣∣
Backup the state with the largest remaining Bellman error

Update Bellman error of affected states after each backup

Requires knowledge of reverse dynamics (predecessor states)

Can be implemented efficiently by maintaining a priority queue

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Real-Time Dynamic Programming

Idea: only states that are relevant to agent

Use agent’s experience to guide the selection of states

After each time-step St ,At ,Rt+1

Backup the state St

v(St) ← maxa∈A
(
Ra

St
+ γ

∑
s′∈S Pa

Sts′
v(s ′)

)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Full-Width Backups

DP uses full-width backups

For each backup (sync or async)

Every successor state and action is considered
Using knowledge of the MDP transitions and reward function

DP is effective for medium-sized problems (millions of states)

For large problems DP suffers Bellman’s curse of
dimensionality

Number of states n = |S| grows exponentially with number of
state variables

Even one backup can be too expensive

vk+1(s)← s

a

r

vk(s
′)← s ′

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Sample Backups

In subsequent lectures we will consider sample backups

Using sample rewards and sample transitions ⟨S ,A,R,S ′⟩
Instead of reward function R and transition dynamics P
Advantages:

Model-free: no advance knowledge of MDP required
Breaks the curse of dimensionality through sampling
Cost of backup is constant, independent of n = |S|

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Approximate Dynamic Programming

Approximate the value function

Using a function approximator v̂(s,w)

Apply dynamic programming to v̂(·,w)

e.g. Fitted Value Iteration repeats at each iteration k,

Sample states S̃ ⊆ S
For each state s ∈ S̃, estimate target value using Bellman optimality equation,

ṽk(s) = maxa∈A
(
Ra

s + γ
∑

s′∈S Pa
ss′ v̂(s

′,wk)
)

Train next value function v̂(·,wk+1) using targets {(s, ṽk(s))}

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Homework Solution

Dynamics: P(s6|s6, a1) = 0.5, P(s7|s6, a1) = 0.5, . . .

Reward: for all actions, +1 in state s1, +10 in state s7, 0 otherwise

Let π(s) = a1 ∀s, assume Vk = [1, 0, 0, 0, 0, 0, 10] and k = 1, γ = 0.5

Compute Vk+1(s6)

Vk+1(s6) = R(s6) + γ
∑
s′∈S

P(s ′|s6, a1)Vk(s
′)

= 0 + 0.5× (0.5× 10 + 0.5× 0)

= 2.5

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Think pair wise 2: Explanation of Policy Not Changing

Suppose for all s ∈ S, πi+1(s) = πi (s)

Then for all s ∈ S, Qπi+1(s, a) = Qπi (s, a)

Recall policy improvement step:

Qπi (s, a) = R(s, a) + γ
∑

s′∈S P(s ′|s, a)V πi (s ′)

πi+1(s) = argmaxa Q
πi (s, a)

πi+2(s) = argmaxa Q
πi+1(s, a) = argmaxa Q

πi (s, a)

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

Asynchronous Dynamic Programming

Opportunities for Out-of-Class Practice

Does the initialization of values in value iteration impact anything?

Is the value of the policy extracted from value iteration at each round guaranteed to
monotonically improve (if executed in the real infinite horizon problem), like policy
iteration?

Dr. Amey Pore (CSC415: Introduction to RL) Lec 2: Planning by Dynamic Programming January 14, 2026 60 / 60

	Outline
	Recap
	MDPs
	Dynamic Programming
	Course logistics
	Value Iteration
	Asynchronous Dynamic Programming

