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Think Pair-wise 1

Question 1: In a tabular MDP asymptotically, value iteration will always yield a policy with
the same value as the policy returned by policy iteration.

o True
o False

@ Not sure

Question 2: Can value iteration require more iterations than |A|lS! to compute the optimal

value function? (Assume |A| and |S| are small enough that each round of value iteration can
be done exactly).

o True
o False

@ Not sure
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Today's Plan

Last Time:
@ Markov reward / decision processes

e Policy evaluation & control when have true model (of how the world works)

Today:
@ Policy evaluation without known dynamics & reward models

@ Control when don’t have a model of how the world works
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Evaluation through Direct Experience

o Estimate expected return of policy
e Only using data from environment (direct experience)!
@ Why is this important?

@ What properties do we want from policy evaluation algorithms?
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if we don’t have access to true MDP
models

@ Monte Carlo policy evaluation
e Temporal Difference (TD)

@ Course logistics

January 21, 2026
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Recall

e Definition of Return, G; (for a MRP)

o Discounted sum of rewards from time step t to horizon
Ge = re + Yree1 + 7 res2 + 7 regs 4

o Definition of State Value Function, V7 (s)
o Expected return starting in state s under policy m

V7™(s) = Ex[Gt|s: = s] = Ex[re + yres1 + ’yzrt+2 + ’y3rt+3 + o lse = 9]

o Definition of State-Action Value Function, Q™ (s, a)
o Expected return starting in state s, taking action a and following policy 7

Q" (s,a) = Ex[Gt|st = s, a; = a]

=Ex[r +vresa +’72ft+2 + ’73ft+3 +---|se =s,ar = a
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Recall: Dynamic Programming for Policy Evaluation

@ In a Markov decision process
VW(S) = EW[Gt‘St = S]
=Erlre + yree1 + 7P res2 + ’Y3ft+3 + st = 5]
= R(s,7(s)) +v Y _ P(s'|s, m(s))V"(s)
s’'eS
o If given dynamics and reward models, can do policy evaluation through dynamic
programming
Vi(s) = r(s,m(s)) +7 Y p(s'ls, m(s)) ViLy(s') (1)
s’'eS
o Note: before convergence, V[ is an estimate of V7
o In Equation 1 we are substituting Y, p(s'[s, 7(s)) V(') for
Erlres1 +yrer2 +V2rees + - |se = s].
@ This substitution is an instance of bootstrapping
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if we don’t have access to true MDP
models

@ Monte-Carlo policy evaluation
e Temporal Difference (TD)

@ Course logistics
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Monte-Carlo Policy Evaluation

Goal: learn V™ from episodes of experience under policy 7

Gr = re +yres1 +¥2rev2 +3res3 + -+ 47 trr, in MDP M under policy
Vﬂ-(S) = ETNW[Gt‘St = S]

o Expectation over trajectories 7 generated by following m

Monte-Carlo policy evaluation uses empirical mean return instead of expected return
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MC Policy Evaluation

Monte-Carlo Policy Evaluation

If trajectories are all finite, sample set of trajectories & average returns
Does not require MDP dynamics/rewards

Does not assume state is Markov

Can be applied to episodic MDPs

o Averaging over returns from a complete episode
o Requires each episode to terminate
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MC Policy Evaluation

First-Visit Monte-Carlo On Policy Evaluation

Initialize N(s) =0,G(s) =0Vse€ S
Loop

@ Sample episode i = sj1,a;1,1,52,3i2,Fi 2,5 T;> 3, T i, T,

o Define Gj¢ = rit + Vrit41 +Yrits2 + ... tri 7, as return from time step t onwards
in ith episode
@ For each time step t until T; ( the end of the episode i )
o If this is the first time t that state s is visited in episode i

@ Increment counter of total first visits: N(s) = N(s) +1
o Increment total return G(s) = G(s) + G,
o Update estimate V™ (s) = G(s)/N(s)
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MC Policy Evaluation

Every-Visit Monte-Carlo On Policy Evaluation

Initialize N(s) =0,G(s) =0,Vs € S
Loop

@ Sample episode i = s; 1,1, 1i,1,Si2,3i2, 11255, T:» 3, T;> 11, T:
Define Gj¢ = r; : 2, Ti-1p, from ti d
@ Define Gj¢ = rit +rit+1 + 7 ritr2 +...7 ri, T, as return from time step t onwards
in ith episode
@ For each time step t until T; (the end of the episode /)

o state s is the state visited at time step t in episodes i
o Increment counter of total visits: N(s) = N(s) +1

o Increment total return G(s) = G(s) + Gj
o Update estimate V™ (s) = G(s)/N(s)
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MC Policy Evaluation

Worked Example: Monte-Carlo On Policy Evaluation

Initialize N(s) =0,G(s) =0,Ys € S
Loop
@ Sample episode i = Sj 1,81, ri 1,512, 3.2, 2,5 T, di,T;s [i.T,

_ 2 T,—1,.
© Git="rit +Vitt1+ Y g2+ .7 T

o For each time step t until T; ( the end of the episode i )
o If this is the first time t that state s is visited in episode i (for first visit MC)

o Increment counter of total first visits: N(s) = N(s) +1
@ Increment total return G(s) = G(s) + Gi ¢
e Update estimate V™ (s) = G(s)/N(s)

Mars rover: R(s) =[10000 0 +10]
Trajectory = (s3,a1,0, 52, 31,0, 52, 31,0, 51, a1, 1, terminal)

Let v < 1. Compute the first visit & every visit MC estimates of s,.

See solutions at the end of the slides
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MC Policy Evaluation

Incremental Mean

The mean Vi, Vs, ... of a sequence Gi, Gy, ... can be computed incrementally,
1k
Vie= 7 Z G;
j=1
1 k—1
j=1

1

= ;(Gk + (k—1)Vi_1)

1
= Vi1 + ;(Gk — Vi—1)
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MC Policy Evaluation

Incremental Monte-Carlo Updates

e Update V™ (s) incrementally after episode s1, a1, 2, ..., ST

@ For each state s; with return G; ;

N(st) < N(st)+1

V7(st) < V™(st) + (Git — V7(st))

1
N(st)

@ In non-stationary problems, it can be useful to track a running mean, i.e. forget old
episodes.

V7 (se) = V7 (st) + a(Git — V7 (st))
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MC Policy Evaluation

Incremental Monte Carlo (MC) On Policy Evaluation

@ Sample episode i = s; 1,31, 11,52, 31,2, i 2, > Si,T:» i, Tj» i, T

2 T—1
© Git=rit +lits1 Y ligg2+ ..y T T

o for t =1: T; where T; is the length of the i-th episode
o VW(S,'t) = V’T(S,'t) + O[(G,',t — VTr(S,'t))
@ We will see many algorithms of this form with a learning rate, target, and incremental
update
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MC Policy Evaluation

Policy Evaluation Diagram
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MC Policy Evaluation

Policy Evaluation Diagram
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MC Policy Evaluation

Policy Evaluation Diagram

S

‘
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MC Policy Evaluation

Policy Evaluation Diagram

a8 a8 = Expectation

—
“ ‘ ‘ = Terminal state
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MC Policy Evaluation

Monte-Carlo Policy Evaluation

= Expectation
N~
. = Terminal state
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MC Policy Evaluation

Monte-Carlo Policy Evaluation

= Expectation

= Terminal state

V™(s) = V7(s)+a(Gie— V™ (s))

MC updates the value estimate
using a sample of the return to
approximate an expectation

January 21, 2026
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Evaluation of the Quality of a Policy Estimation Approach

o Consistency: with enough data, does the estimate converge to the true value of the
policy?

o Computational complexity: as we get more data, computational cost of updating
estimate

o Memory requirements

o Statistical efficiency (intuitively, how does the accuracy of the estimate change with the
amount of data)

o Empirical accuracy, often evaluated by mean squared error
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Evaluation of the Quality of a Policy Estimation: Bias, Variance and MSE

o Consider a statistical model that is parameterized by 6 and that determines a probability
distribution over observed data P(x|0)
Consider a statistic  that provides an estimate of # and is a function of observed data x

e E.g. for a Gaussian distribution with known variance, the average of a set of i.i.d data points
is an estimate of the mean of the Gaussian

Definition: the bias of an estimator 8 is:

S

Biasy(0) = E,pp[f] — 0

o Definition: the variance of an estimator 8 is:

~

Var() = El(9 - E4])?]
o Definition: mean squared error (MSE) of an estimator @ is:

MSE () = Var(f) + Biasy(0)?
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MC Policy Evaluation

Evaluation of the Quality of a Policy Estimation: Consistent Estimator

@ Let n be the number of data points x used to estimate the parameter 6 and call the
resulting estimate of # using that data 6,

Then the estimator 9,, is consistent if, for all € > 0:

lim Pr(|0,—6] >¢) =0

n—o0

@ If an estimator is unbiased (bias = 0) is it consistent?
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MC Policy Evaluation

Properties of Monte-Carlo On Policy Evaluators

Properties:
o First-visit Monte Carlo
o V7™ estimator is an unbiased estimator of true E,[G;|s; = s]
o By law of large numbers, as N(s) — oo, V™(s) = E.[Gt|s: = s]
o Every-visit Monte Carlo

e V7 every-visit MC estimator is a biased estimator of V™
o But consistent estimator and often has better MSE

@ Incremental Monte Carlo
o Properties depends on the learning rate «
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Monte-Carlo (MC) Policy Evaluation Key Limitations

@ Generally high variance estimator
e Reducing variance can require a lot of data
o In cases where data is very hard or expensive to acquire, or the stakes are high, MC may be
impractical
@ Requires episodic settings
o Episode must end before data from episode can be used to update V
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MC Policy Evaluation

Monte Carlo (MC) Policy Evaluation Summary

Aim: estimate V™ (s) given episodes generated under policy 7
e s1,4a1,Mn,S,a, mn,... where the actions are sampled from

Gt =ri+~yrg1+ ’ert+2 + 73rt+3 + ... under policy

V7(s) = Ex[Gt|s: = s]

Simple: Estimates expectation by empirical average (given episodes sampled from policy
of interest)

Updates V estimate using sample of return to approximate the expectation

Does not assume Markov process

Converges to true value under some (generally mild) assumptions

Note: Sometimes is preferred over dynamic programming for policy evaluation even if
know the true dynamics model and reward
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MC Policy Evaluation

This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if we don’t have access to true MDP
models

@ Monte Carlo policy evaluation
e Temporal Difference (TD)

@ Course logistics
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Temporal Difference Learning

Temporal Difference Learning

“If one had to identify one idea as central and novel to reinforcement learning, it would
undoubtedly be temporal-difference (TD) learning.” — Sutton and Barto 2017

Combination of Monte Carlo & dynamic programming methods

Model-free
Can be used in episodic or infinite-horizon non-episodic settings

Immediately updates estimate of V after each (s¢, at, rt, Se4+1) tuple

January 21, 2026
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Temporal Difference Learning

Temporal Difference Learning for Estimating V

e Aim: estimate V™ (s) online from experience under policy 7
© Gt =ri+rey1+7rey2+ ... in MDP M under policy 7
@ In incremental every-visit MC, update towards actual return G;

Vﬂ-(St) = Vﬂ-(St) + Q(Gt — VW(St))
o ldea: update value V™ (s;) toward estimated return using ry + V7™ (sp41)

V7(st) = V7(st) + allre + 7V (se1)] = V7(st))
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Temporal Difference [TD(0)] Learning

Aim: estimate V™ (s) online from experience under policy 7
e sj,ai, n,S,a,rn,... where the actions are sampled from 7

e TD(0) learning / 1-step TD learning: update estimate towards target

V(st) = V7(st) + a([re + 7V (se41)] =V (st))

TD target

e TD(0) error:
ot = re + YV (se11) — V7 (st)

Update can be done after each step! (online, model-free) (S, A, Ri+1, St+1) tuple

Don't need episodic setting
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Temporal Difference [TD(0)] Learning Algorithm

o Input: «
o Initialize V™(s) =0,Vs € S
@ Loop

o Sample tuple (s, ar, re, St+1)
o V™(st) = V™(st) + a[re + vV (5t41)] =V (st))
—_———

TD target
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Worked Example TD Learning

Input: o
Initialize V"™(s) =0,Vs € S
Loop
o Sample tuple (s;, a;, rt, St41)
o V7(st) = V™(st) + af[re + vV (se41)] =V (st))
TD target
Example:

Mars rover: R=[100000 + 10] for any action

m(s) = a1Vs,y = 1. any action from s; and s; terminates episode

Trajectory = (s3,a1,0, 5, 31,0, 5,a1,0, 5, ar, 1, terminal)

TD estimate of all states (init at 0) with & = 1,y < 1 at end of this episode?

First visit MC estimate of V of each state? [1 v 2 0 0 0 0]
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Temporal Difference Learning

Temporal Difference (TD) Policy Evaluation

V7(st) = V7(st) + al[re + vV (st+1)] = V7 (st))

TD updates the value es-
TD updates the value P

. . S timate by bootstrapping,
estimate using a sample .
) uses estimate of V/(s¢11)
of s¢11 to approximate an
expectation

= Expectation
= Terminal state
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Temporal Difference Learning

Think Pair wise 2: Temporal Difference [TD(0)] Learning Algorithm

@ Input: «
e Initialize V™(s) =0,Vs € S
@ Loop

o Sample tuple (s, ar, rt, St41)
o V7(st) = V™(st) + a([re + 7V (st41)] —=V™(st))
—_—

TD target
Select all that are true
® If « =0 TD will weigh the TD target more than the past V estimate
® If « =1 TD will update the V estimate to the TD target
® If « =1 TD in MDPs where the policy goes through states with multiple possible next
states, V may oscillate forever
® There exist deterministic MDPs where oo = 1 TD will converge

January 21, 2026
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Temporal Difference Learning

Summary: Temporal Difference Learning

® 6 6 o6 o o

Combination of Monte Carlo & dynamic programming methods
Model-free

Bootstraps and samples

Can be used in episodic or infinite-horizon non-episodic settings
Immediately updates estimate of V after each (S¢, A¢, Rey1, Se4+1) tuple

Biased estimator (early on will be influenced by initialization, and won't be unbiased
estimator)

Generally lower variance than Monte Carlo policy evaluation

Consistent estimator if learning rate « satisfies same conditions specified for incremental
MC policy evaluation to converge

Note: algorithm | introduced is TD(0). In general can have approaches that interpolate
between TD(0) and Monte Carlo approach
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Temporal Difference Learning

Driving Home Example

State Elapsed Time Predicted Predicted

(minutes) Time to Go Total Time
leaving office 0 30 30
reach car, raining 5 35 40
exit highway 20 15 35
behind truck 30 10 40
home street 40 3 43
arrive home 43 0 43
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Driving Home Example: MC vs. TD

Changes recommended by Changes recommended
Monte Carlo methods (a=1) by TD methods (a=1)

454
_.Actual outcome actual
outcome
. 40+ . 40
Predicted Predicted
total total
travel 35 travel
time time
30
T T T T T T T T T T T T
leaving reach eslting 2ndary home  amive leaving reach exiting 2ndary home arrivo
office  car  highway foad streel  home office car highway mad sheel home
Situation Situation
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Temporal Difference Learning

Comparison: DP vs MC vs TD

DP MC TD
Data usage All transitions Complete episodes One step
Bootstrapping Yes No Yes
Sampling No Yes Yes
Model required Yes No No
Computational cost High Low Low
Bias Biased Unbiased (First-Visit) | Biased
Variance None High Low
Works online? Yes No Yes
Assumes Markov property Yes No Yes

20Online learning refers to updating estimates step-by-step during an episode, rather than waiting until the

end.
January 21, 2026
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Temporal Difference Learning

Random Walk: MC vs. TD

.OCOOOOI.

start
(]
o 0.8 I
= ﬁ
o A~
- g
:“3 0.6 _g
« - = 9]
£ 1 &
5 0.4 5
w T tue 2
values S
0.2 e
()]
g
0 T T T T 1 x . ; : y |
A B C o E 0 25 50 75 100

Walks/Episodes
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Batch MC and TD

e Batch (Offline) solution for finite dataset

o Given set of K episodes
o Repeatedly sample an episode from K
o Apply MC or TD(0) to the sampled episode

e What do MC and TD(0) converge to?
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AB Example

Two states A, B; no discounting; 8 episodes of experience

A 0 B,0
B, 1

WWWwwWwmww

O = = = = =

What is V(A), V(B)?
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AB Example

Two states A, B; no discounting; 8 episodes of experience

A, 0 B, 0
B, 1

r =
@ 100%

WWw W W w
O R FH = = =

What is V(A), V(B)?
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Batch MC and TD: Convergence

@ Monte Carlo in batch setting converges to min MSE (mean squared error)
e Minimize loss with respect to observed returns
o In AB example, V(A) =0
@ TD(0) converges to DP policy V™ for the MDP with the maximum likelihood model
estimates
o Aka same as dynamic programming with certainty equivalence!
o Maximum likelihood Markov decision process model

P(St1|St, Ar ZH (Sk = St, Ak = At, Skr1 = Ser1)

Sta

N 1 d
R(St7At) = m ;H(Sk - 5t7Ak = At)Rk+l

o Compute V7 using this model
o In AB example, V(A) = 0.75
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Temporal Difference Learning

This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if we don’t have access to true MDP
models

@ Monte Carlo policy evaluation
e Temporal Difference (TD)

o Course logistics

January 21, 2026
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Course Logistics

Those not added on MarkUs: Send an email [CSC415].
Sample Mid-term exam uploaded last week.
Solutions will be out tomorrow.

Lab 2 will be help tomorrow.

e 6 6 o o

Check Piazza for weekly updates.
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course logistics

Project Goals

Please read the project guidelines.
@ Assignement 1: Literature review and baseline
o Topics: Any topic covered in the course
o We provided the ones since these are fundamental challenges
o Available open-source repos.
o Talk to TAs and instructor if outside the pdf
@ Project proposal:
o Based on challenges identified in assignment 1.
o Often needs more literature survey
e Form an hypothesis, which environments to use
@ Project report:
e Your Investigations
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course logistics

Project ldeas

Please read the project guidelines.
@ New idea for RL

o Introducing new regularization to make learning faster.
o New exploration strategy
o New architecture of NN

o New application of RL

o Robotics: Generalization to new objects, colors.
o LLMs: reasoning improvements for local LLMs

@ Future works of existing papers
@ More ideas here:
https://cs224r.stanford.edu/projects/cs224r_final_projects.html
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course logistics

Thank you!
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n-Step Prediction

1-step TD co-step TD
and TD(O) 2-stepTD  3-step TD n-step TD and Monte Carlo

T
T

O

O——"0——"0
o———(——10

O—e—0O—o—D——0
oo )—e—)

O'_. e

D.—. SE
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n-Step Return

@ Consider the following n-step returns for n = 1,2, co:
n=1 (TD) Gtgl) = Rt+1 + ")/V(SH_]_)
n=2 Gt(2) = Ret1 4+ YRes2 + 72 V(Str2)

n=oo (MC) G =Ru1++Ruo+--+~" 'Ry
@ Define the n-step return
ng) = Rer1 +YRes2 + - + 7" Resn +7"V(Stn)
@ n-step temporal-difference learning

V(S:) + V(S) +a (6" - V(s)
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course logistics

Large Random walk example

0.55

Average 045

RMS error
over 19 states 04
and first 10
episodes ¥
03
025 1 1 1 1 1 1
0 02 0.4 0.6 0.8 1
(8%
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course logistics

Think pair-wise 1 solution

@ In a tabular MDP asymptotically value iteration will always yield a policy with the same
value as the policy returned by policy iteration
Answer. True. Both are guaranteed to converge to the optimal value function and a
policy with an optimal value

@ Can value iteration require more iterations than |A|‘SI to compute the optimal value
function? (Assume |A| and |S| are small enough that each round of value iteration can be
done exactly).

Answer: True. As an example, consider a single state, single action MDP where
r(s,a) = 1,7 = .9 and initialize Vo(s) =0. V*(s) = ﬁ but after the first iteration of
value iteration, Vi(s) = 1.
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course logistics

Example: Mars Rover - Monte Carlo

Mars rover: R=[100000 + 10] for any action
m(s) = a1 Vs, v = 1. Any action from s; and s; terminates episode

Trajectory: (s3,a1,0,s2,a1,0,5,a1,0,51,a;,1, terminal)

First visit MC estimate of V of each state?
@ si: First visit atend, G =1,s0 V(s51) =1
@ sp: Firstvisitatt=1, Gi=040+1=1,s0 V(sp) =1 (oryify#1)
o s3: Firstvisitat t =0, Go=0+0+0+1=1,s0 V(s3) =1 (or v if y # 1)
@ Other states: Not visited, V =0
Answer: [L 7142 0000] (withy=1:[1110000])
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Example: Mars Rover TD Learning

Initialize V(s) =0 Vs
Trajectory: (s3,a1,0, 52, a1,0, s, a1, 0, s1, a1, 1, terminal)
Update rule: V(s;) < V(s¢) + a(re +vV(se+1) — V(st)) with a =1
Step 1: (s3 BN sp). Target 0 +~vV(s2) = 0.
o V(s3) <~ 0+1(0—-0)=0
Step 2: (s2 5 ). Target 0 +~V(s2) =0.
o V(s) < 0+1(0—-0)=0
Step 3: (s2 9, s1). Target 04+ ~vV(s1) =0.
o V(s2) <~ 0+1(0—-0)=0
Step 4: (s1 EN T). Target 1 +~(0) = 1.
o V(s1)«0+1(1-0)=1
Final estimates: V(s;) = 1, others 0.
Note: V/(sz) remains O despite being visited, because standard TD(0) bootstraps from the
current estimate of the next state (which was 0).
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Think Pair Wise 2 Solution

TD Update Rule: V(S;) < V(S:) + a(Res1 +7V(Se41) — V(S))
TD Error §;
® If a =0 TD will weigh the TD target more than the past V' estimate.
False. V/(S;:) < V(S:) +0-6: = V(S:). It keeps the past estimate.
® If « =1 TD will update the V estimate to the TD target.
True. V(S:) «+ V(S:) + 1 (Rep1 + 7V(Se41) — V(S:)) = Rev1 + vV(Ses1)-

® If & =1 and next states are stochastic, V may oscillate forever.
True. The target Rey1 + vV/(Se+1) depends on the sampled Sip1 ~ P(:|St, Ae). If St — Sa or S — Sg,
V(S:) will jump between targets.

® There exist deterministic MDPs where o =1 TD will converge.
True. In deterministic MDPs, R:+1 and S;11 are fixed for (S¢, A:). The update V(S;) + Rep1 + vV/(Se+1)
is equivalent to Value lteration.
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Solution: AB Example

Temporal Difference:

Monte Carlo: @ For B, TD converges to the average

@ Average return for state A

reward:
@ State A only appears in one episode: A,
1+2
0, B, 0 v(B) = /8 Jlr/8><0:0.75
@ Return for this episode is G =04+0=0
o Hence, V(A) =0 e For A, TD bootstraps using V/(B):

o V(A)=0+ V(B)=0.75
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course logistics

Certainty Equivalence for Mars Rover example

Mars rover: R=[100000 + 10] for any action

7(s) = a1 Vs,y = 1. Any action from s; and s; terminates episode
Trajectory = (s3,a1,0,52,a1,0,%,a1,0,s1,a1,1, terminal)

First visit MC estimate of V of each state? [1 v +2 0 0 0 0]

TD estimate of all states (init at 0) with « =1is[1 00 0 0 0 0]
Optional exercise: What is the certainty equivalent estimate?
7=1[100000 0], p(terminate|s;, a1) = p(sz2]s3,a1) =1
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Today's Lecture

@ Last part:

o Model-free prediction
o Estimate the value function of an unknown MDP

@ This part:

e Model-free control
o Optimise the value function of an unknown MDP
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Uses of Model-Free Control

Some example problems that can be modelled as MDPs

o Elevator Robocup Soccer

Quake

Portfolio management

o Parallel Parking
@ Ship Steering
@ Bioreactor Protein Folding

@ Helicopter Robot walking

@ Aeroplane Logistics Game of Go

For most of these problems, either:

@ MDP model is unknown, but experience can be sampled
@ MDP model is known, but is too big to use, except by samples

Model-free control can solve these problems
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Outline

@ Monte-Carlo Control
e Temporal Difference Methods for Control (SARSA, Q-Learning)
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Monte-Carlo Control

Recall: Generalized Policy lteration

evaluation
V—yT
T V
starting v* .
V x < —>gready(V)
improvement
1" = L]
@ Policy evaluation Estimate V™ .
S
Iterative policy evaluation T vV

@ Policy improvement Generate n/ >
Greedy policy improvement
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Monte-Carlo Control

Generalized Policy lteration with MC evaluation

starting
Vr

@ Policy evaluation: MC policy evaluation, V™

@ Policy improvement: Greedy policy improvement
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Monte-Carlo Control

Model-Free Policy Improvement with Q-Value

o Greedy policy improvement over V(s) requires model of MDP
/ — R P / v7r,- /
m(s) = argmax ( (s;a)+ VSZG;S (s'ls,a)V™(s ))

o Greedy policy improvement over Q(s, a) is model-free

/ _ v
m'(s) = argmax Q(s, a)
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Monte-Carlo Control

Generalized Policy Iteration with Q value function

Qs T

@ Policy evaluation: MC policy evaluation, @ = Q™
@ Policy improvement: Greedy policy improvement?
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Monte-Carlo Control

Model-free Policy lteration

Initialize policy m

Repeat:

o Policy evaluation: compute Q™
o Policy improvement: update m given Q™

(]

May need to modify policy evaluation:
o If w is deterministic, can't compute Q(s, a) for any a # 7(s)

How to interleave policy evaluation and improvement?
o Policy improvement is now using an estimated @
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Monte-Carlo Control

The Problem of Exploration

World

Observation

Reward Action

Agent

@ Goal: Learn to select actions to maximize total expected future reward
@ Problem: Can't learn about actions without trying them (need to explore)

@ Problem: But if we try new actions, spending less time taking actions that our past
experience suggests will yield high reward (need to exploit knowledge of domain to
achieve high rewards)
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Monte-Carlo Control

e-greedy Policies

@ Simple idea to balance exploration and achieving rewards
o Let |A| be the number of actions
@ with probability 1 — ¢, choose the greedy action.

@ with probability €, choose an action uniformly at random

S+ 1—€ ifa=argmaxycy Q(s,d)
m(als) =

T

otherwise

>
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Monte-Carlo Control

Monte-Carlo Policy Iteration

Qqx, Tx

@ Policy evaluation: MC policy evaluation, @ = Q™

@ Policy improvement: e-Greedy policy improvement.
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Monte-Carlo Control

Monte-Carlo Policy Iteration

Qs, Tk

@ Policy evaluation: MC policy evaluation, @ ~ QT

@ Policy improvement: e-Greedy policy improvement.
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Monte-Carlo Control

e-Greedy Policy Improvement

For any e-greedy policy 7, the e-greedy policy ©’ with respect to Q™ is an improvement,
VT (s) = V7 (s)

@ Proof at the end of the slides.
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Monte-Carlo Control

Recall Monte Carlo Policy Evaluation, Now for Q

1: Initialize Q(s,a) =0,N(s,a) =0,V(s,a),k=1,Inpute =17

2: loop

3: Sample k-th episode (sk.1, ak.1, k.1, Sk,2; - - - s Sk,T) given T
4: Compute Gy ¢ = rit + Y41+ + VT_lrk’T,Vt

5: fort=1,...,T do

6: if First visit to (s, a) in episode k then

7 N(s,a) = N(s,a)+1

8: Q(st;ar) = Q(st, ar) + m(Gk,t — Q(s¢,ar))

9: end if

10: end for
11: k=k+1
12: end loop
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Monte-Carlo Control

Monte Carlo Online Control / On Policy Improvement

1: Initialize Q(s,a) =0,N(s,a) =0,V(a,s), Sete=1,k=1
2: mx = e-greedy(Q) // Create initial e-greedy policy

3: loop

4; Sample k-th episode (Sk.1, k1, fk.1, Sk.2s - - -, Sk,T) Eiven mx
5: Compute Gy ¢ = rie +Yrker1 + -+ ‘rT

6: fort=1,...,T do

7 if First visit to (s, a) in episode k then

8: N(s,a) = N(s,a) +1

9: Q(st,ar) = Q(st, ar) + m(Gk,t — Q(s¢,ar))

10: end if

11: end for

12: k=k+1le=1/k

13: Tk = e-greedy(Q) // Policy improvement
14: end loop
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Monte-Carlo Control

Monte Carlo Online Control / On Policy Improvement

1: Initialize Q(s,a) =0,N(s,a) =0,V(s,a), Sete=1,k=1
2: mx = e-greedy(Q) // Create initial e-greedy policy

3: loop

4 Sample k-th episode (Sk.1, ak,1; k.1, Sk,2; - - - » Sk, T) Biven
5 Compute Gye = e + Vrker1 + -+ Trr

6: fort=1,...,T do
7
8
9

if First visit to (s, a) in episode k then

N(s,a) = N(s,a)+1

Q(st, ar) = Q(se, ar) + m(Gkﬁ — Q(st;ar))
10: end if
11: end for
122 k=k+1e=1/k
13: 7 = e-greedy(Q) // Policy improvement
14: end loop

@ Is @ an estimate of @*? When might this procedure fail to compute the optimal Q*?
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Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

o All state-action pairs are visited an infinite number of times: lim N;(s,a) — oo
I—00

@ Behavior policy (policy used to act in the world) converges to greedy policy

o A simple GLIE strategy is e-greedy where ¢ is reduced to 0 with the following rate:
€ =1/i

GLIE Monte-Carlo control converges to the optimal state-action value function

Q(s,a) — Q*(s,a)
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Outline

@ Monte-Carlo Control
e Temporal Difference Methods for Control (SARSA, Q-Learning)
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On-Policy Control with SARSA

O, T

Every Time Step
@ Policy evaluation: SARSA, Q ~ Q7
@ Policy improvement: e-Greedy policy improvement.
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General Form of SARSA Algorithm

1: Set initial e-greedy policy 7, t = 0, initial state s = s

2: Take a; ~ m(s¢) // Sample action from policy

3: Observe (¢, Se11)

4: loop

5: Take action a1 ~ 7(St41)

6: Observe (rt, St42)

7 Q(st, ar) < Q(se,ae) + are +vQ(St+1, ar41) — Q(st, at))
8: m(s¢) = arg max, Q(st, a) w.prob 1 — ¢, else random

9: t=t+1
10: end loop

@ See worked example with Mars rover at end of slides
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Temporal Difference Control

Convergence Properties of SARSA

SARSA for finite-state and finite-action MDPs converges to the optimal action-value,
Q(s,a) — Q*(s, a), under the following conditions:

@ The policy sequence m¢(al|s) satisfies the condition of GLIE
@ The step-sizes a; satisfy the Robbins-Munro sequence such that

(e} e}
_ 2
oy =00 and of < 00
t=1 t=1

o Forex, a; = % satisfies the above condition.
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On and Off-Policy Learning

@ On-policy learning

e “Learn on the job”

o Learn about policy 7 from experience sampled from 7
o Off-policy learning

o “Look over someone's shoulder”

o Learn about policy 7 from experience sampled from p
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Off-Policy Learning

o Evaluate target policy 7(a|s) to compute v,(s) or gx(s, a)
e While following behaviour policy u(als)

{S1,A1,Re,..., ST}~
@ Why is this important?
o Learn from observing humans or other agents
o Re-use experience generated from old policies 71,7, ..., T¢_1
o Learn about optimal policy while following exploratory policy
o Learn about multiple policies while following one policy
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Q-Learning: Learning the Optimal State-Action Value

@ SARSA is an on-policy learning algorithm
o SARSA estimates the value of the current behavior policy (policy using to take actions in the
world)
o And then updates that (behavior) policy
@ Alternatively, can we directly estimate the value of 7* while acting with another behavior
policy mp?
@ Yes! Q-learning, an off-policy RL algorithm
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Q-Learning

@ Estimate the Q-value of pi* while acting with another behavior policy 7

o Key idea: Maintain Q estimates and use bootstrap for best future value.

Recall SARSA

Q(st,ar) «+ Q(st,ar) + al(re + YQ(St+1, ar+1)) — Q(st, a))

Q-learning

Q(st,ar) < Q(st,ar) + af(re + m;/iX Q(st41, 3,)) — Q(st,at))
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Q-Learning with e-greedy Exploration

1: Initialize Q(s,a) «+ 0,Vs € S,a € A, t =0, initial state s; = 5

2: Set 7, to be e-greedy w.r.t. @

3: loop

4: Take a; ~ mp(s¢) // Sample action from policy

5: Observe (rt, Sp41)

6: Q(st, ar) < Q(st,a¢) + a(re + v maxy Q(ser1,3) — Q(st, ar))
7 7(s¢) = arg max, Q(s¢, a) w.prob 1 — ¢, else random

8: t=t+1

9: end loop

@ See optional worked example and optional understanding check at the end of the slides
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Q-Learning Control Algorithm

Q(S,A) + Q(S,A) + a(R+ymaxy Q(S',a") — Q(S, A))

Q-learning control converges to the optimal action-value function, Q(s, a) — g.(s, a)
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Temporal Difference Control

Thank you!
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Temporal Difference Control

Homework: Model-free Generalized Policy Improvement

Consider policy iteration
@ Repeat:

o Policy evaluation: compute Q™
o Policy improvement 7;11(s) = arg max, Q™ (s, a)

@ Question: Is this w41 deterministic or stochastic? Assume for each state s there is a
unique max, Q™ (s, a).

@ Answer: Deterministic, Stochastic, Not Sure

@ Now consider evaluating the policy of this new m; 1. Recall in model-free policy
evaluation, we estimated V7, using 7 to generate new trajectories

@ Question: Can we compute Q™+1(s, a)Vs, a by using this 741 to generate new
trajectories?
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Temporal Difference Control

Proof: e-Greedy Policy Improvement

Q7(s,7'(s)) = ) m'(als)Q"(s, a)

acA
= 6/|"4| Z Qw(sv a) + (1 - 6) ranea.Zl( QW(Sa a)
acA
> A Y @ (sa) + (10 Y " M gr(s o)
acA acA
=) (als)Q7(s,a) = V(s)
acA

Therefore from policy improvement theorem, V™ (s) > V™ (s)
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Optional Worked Example: MC for On Policy Control Solution

®© ©6 6 6 6 6 o o o

Mars rover with new actions:

o r(—a)=[100000 +10], r(—,a)=[000000 +5],y=1.
Assume current greedy 7(s) = a1Vs,e = 0.5. Q(s,a) = 0 for all (s, a)
Sample trajectory from e-greedy policy
Trajectory = (s1,a1,0,5,0,%,0,s,0,s1,a, 1, terminal)

First visit MC estimate of Q of each (s, a) pair?
., =11000000]
After this trajectory:
Q*,,=[0100000]
The new greedy policy would be: 7 =[1 2 1 tie tie tie tie]
If e =1/3, prob of selecting a; in s; in the new e-greedy policy is 5/6.
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Q-Learning with e-greedy Exploration

@ What conditions are sufficient to ensure that Q-learning with e-greedy exploration
converges to optimal Q*?

@ What conditions are sufficient to ensure that Q-learning with e-greedy exploration
converges to optimal 7*7
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Worked Example: SARSA for Mars Rover

1: Set initial e-greedy policy 7, t = 0, initial state s = sg

2: Take a; ~ 7(s¢) // Sample action from policy

3: Observe (rt, Se11)

4: loop

5: Take action a;y1 ~ 7(St41)

6 Observe (rt, St42)

7 Q(st, ar) < Q(st; ar) + are + YQ(St41, ar1) — Qse, ar))
8 m(st) = arg max, Q(s;, a) w.prob 1 — ¢, else random

9 t=t+1

10: end loop

o Initialize e = 1/k,k =1, and @ = 0.5, Q(—,a) =[1000 00 + 10]
® Q(—,a)=[000000 +5], y=1

@ Assume using same trajectory as example above
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Worked Example: SARSA for Mars Rover

1: Set initial e-greedy policy 7, t = 0, initial state s = sg

2: Take a; ~ 7(s¢) // Sample action from policy

3: Observe (r¢, St+1)

4: loop

5: Take action a;y1 ~ 7(St41)

6 Observe (rt, St42)

7 Q(st,ar) < Q(se,ar) + alre + YQ(Sev1, aev1) — Q(st, ar))
8 7(s¢) = arg max, Q(s¢, a) w.prob 1 — ¢, else random

9 t=t+1

10: end loop

o Initialize ¢ = 1/k, k=1, and & = 0.5, Q(—,a) =[1 00000 + 10]
® Q(—,2)=[000000 +5],y=1
® Q(s1,a2) =5.04+5-(0+ Q(s2,a1)) =25
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Worked Example: e-greedy Q-Learning Mars

1: Initialize Q(s,a) «+ 0,Vs € S,a € A, t =0, initial state s; = 5

2: Set 7, to be e-greedy w.r.t.

3: loop

4 Take a; ~ 7mp(s¢) // Sample action from policy

5 Observe (rt, St+1)

6: Q(st,ar) < Q(st, ar) + afre + ymaxy Q(st+1,a") — Q(st, a))
7 7(s¢) = arg max, Q(s¢, a) w.prob 1 — ¢, else random

8 t=t+1

9: end loop

@ Initialize e =1/k,k=1,and a = 0.5, Q(—,a)=[100000 + 10]
® Q(—2)=[000000 +5],y=1

@ Like in SARSA example, start in sg and take a;
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Temporal Difference Control

Worked Example: e-greedy Q-Learning Mars
1: Initialize Q(s,a) + 0,Vs € S,a € A, t =0, initial state s; = 59
2: Set 7 to be e-greedy w.r.t. Q
3: loop
4 Take a; ~ mp(s¢) // Sample action from policy
5 Observe (rt, St41)
6 Q(st; ar) < Q(st;ar) + alre +ymaxy Q(se+1,3") — Q(st, ar))
7 m(st) = arg max, Q(s¢, a) w.prob 1 — ¢, else random
8
9:

t=t+1
end loop

o Initialize e=1/k,k=1,and a« = 0.5, Q(—,a)=[100000 + 10]

@ Q(—,a)=[000000 +5],y=1

@ Like in SARSA example, start in s; and ax: L¢(ss,8) =0—5-0.1 =-0.5

@ Recall that in the SARSA update we saw Q(s4, a2) = 2.5 because we used the actual action taken

@ Does how Q is initialized matter (initially asymptotically)?
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(Optional) Think pair wise: SARSA and Q-Learning

o SARSA: Q(St, at) < Q(St, at) + a(rt + '}’Q(St+1, at+1) — Q(St, at))
o Q-Learning: Q(st, at) + Q(st, ar) + a(r: + v maxy Q(st4+1,3) — Q(st, ar))

Select all that are true
@ Both SARSA and Q-learning may update their policy after every step

o If e =0 for all time steps, and Q is initialized randomly, a SARSA Q state update will be
the same as a Q-learning Q state update

@ Not sure
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(Optional) Think pair wise: SARSA and Q-Learning Solutions

o SARSA: Q(St, at) < Q(St, at) + a(rt + '}’Q(St+1, at+1) — Q(St, at))
o Q-Learning: Q(st, at) + Q(st, ar) + a(r: + v maxy Q(st4+1,3) — Q(st, ar))

Select all that are true
@ Both SARSA and Q-learning may update their policy after every step

o If e =0 for all time steps, and Q is initialized randomly, a SARSA Q state update will be
the same as a Q-learning Q state update

@ Not sure
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