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Outline

Think Pair-wise 1

Question 1: In a tabular MDP asymptotically, value iteration will always yield a policy with
the same value as the policy returned by policy iteration.

True

False

Not sure

Question 2: Can value iteration require more iterations than |A||S| to compute the optimal
value function? (Assume |A| and |S| are small enough that each round of value iteration can
be done exactly).

True

False

Not sure
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Outline

Today’s Plan

Last Time:

Markov reward / decision processes

Policy evaluation & control when have true model (of how the world works)

Today:

Policy evaluation without known dynamics & reward models

Control when don’t have a model of how the world works
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Outline

Evaluation through Direct Experience

Estimate expected return of policy π

Only using data from environment (direct experience)1

Why is this important?

What properties do we want from policy evaluation algorithms?
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Outline

This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if we don’t have access to true MDP
models

Monte Carlo policy evaluation

Temporal Difference (TD)

Course logistics
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Outline

Recall

Definition of Return, Gt (for a MRP)
Discounted sum of rewards from time step t to horizon

Gt = rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · ·

Definition of State Value Function, V π(s)
Expected return starting in state s under policy π

V π(s) = Eπ[Gt |st = s] = Eπ[rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · · |st = s]

Definition of State-Action Value Function, Qπ(s, a)
Expected return starting in state s, taking action a and following policy π

Qπ(s, a) = Eπ[Gt |st = s, at = a]

= Eπ[rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · · |st = s, at = a]
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Outline

Recall: Dynamic Programming for Policy Evaluation

In a Markov decision process

V π(s) = Eπ[Gt |st = s]

= Eπ[rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · · |st = s]

= R(s, π(s)) + γ
∑
s′∈S

P(s ′|s, π(s))V π(s ′)

If given dynamics and reward models, can do policy evaluation through dynamic
programming

V π
k (s) = r(s, π(s)) + γ

∑
s′∈S

p(s ′|s, π(s))V π
k−1(s

′) (1)

Note: before convergence, V π
k is an estimate of V π

In Equation 1 we are substituting
∑

s′∈S p(s
′|s, π(s))V π

k−1(s
′) for

Eπ[rt+1 + γrt+2 + γ2rt+3 + · · · |st = s].

This substitution is an instance of bootstrapping
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Outline

This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if we don’t have access to true MDP
models

Monte-Carlo policy evaluation

Temporal Difference (TD)

Course logistics
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Outline

Monte-Carlo Policy Evaluation

Goal: learn V π from episodes of experience under policy π

Gt = rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · ·+ γTi−trTi
in MDP M under policy π

V π(s) = Eτ∼π[Gt |st = s]

Expectation over trajectories τ generated by following π

Monte-Carlo policy evaluation uses empirical mean return instead of expected return
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MC Policy Evaluation

Monte-Carlo Policy Evaluation

If trajectories are all finite, sample set of trajectories & average returns

Does not require MDP dynamics/rewards

Does not assume state is Markov

Can be applied to episodic MDPs

Averaging over returns from a complete episode
Requires each episode to terminate
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MC Policy Evaluation

First-Visit Monte-Carlo On Policy Evaluation

Initialize N(s) = 0,G (s) = 0∀s ∈ S
Loop

Sample episode i = si ,1, ai ,1, ri ,1, si ,2, ai ,2, ri ,2, . . . , si ,Ti
, ai ,Ti

, ri ,Ti

Define Gi ,t = ri ,t + γri ,t+1 + γ2ri ,t+2 + . . . γTi−1ri ,Ti
as return from time step t onwards

in ith episode

For each time step t until Ti ( the end of the episode i )
If this is the first time t that state s is visited in episode i

Increment counter of total first visits: N(s) = N(s) + 1
Increment total return G(s) = G(s) + Gi,t

Update estimate V π(s) = G(s)/N(s)
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MC Policy Evaluation

Every-Visit Monte-Carlo On Policy Evaluation

Initialize N(s) = 0,G (s) = 0, ∀s ∈ S
Loop

Sample episode i = si ,1, ai ,1, ri ,1, si ,2, ai ,2, ri ,2, . . . , si ,Ti
, ai ,Ti

, ri ,Ti

Define Gi ,t = ri ,t + γri ,t+1 + γ2ri ,t+2 + . . . γTi−1ri ,Ti
as return from time step t onwards

in ith episode

For each time step t until Ti (the end of the episode i)

state s is the state visited at time step t in episodes i
Increment counter of total visits: N(s) = N(s) + 1
Increment total return G (s) = G (s) + Gi,t

Update estimate V π(s) = G (s)/N(s)
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MC Policy Evaluation

Worked Example: Monte-Carlo On Policy Evaluation

Initialize N(s) = 0,G (s) = 0, ∀s ∈ S
Loop

Sample episode i = si ,1, ai ,1, ri ,1, si ,2, ai ,2, ri ,2, . . . , si ,Ti
, ai ,Ti

, ri ,Ti

Gi ,t = ri ,t + γri ,t+1 + γ2ri ,t+2 + . . . γTi−1ri ,Ti

For each time step t until Ti ( the end of the episode i )
If this is the first time t that state s is visited in episode i (for first visit MC)

Increment counter of total first visits: N(s) = N(s) + 1
Increment total return G(s) = G(s) + Gi,t

Update estimate V π(s) = G(s)/N(s)

Mars rover: R(s) = [ 1 0 0 0 0 0 +10]

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

Let γ < 1. Compute the first visit & every visit MC estimates of s2.

See solutions at the end of the slides
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MC Policy Evaluation

Incremental Mean

The mean V1,V2, . . . of a sequence G1,G2, . . . can be computed incrementally,

Vk =
1

k

k∑
j=1

Gj

=
1

k

Gk +
k−1∑
j=1

Gj


=

1

k
(Gk + (k − 1)Vk−1)

= Vk−1 +
1

k
(Gk − Vk−1)
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MC Policy Evaluation

Incremental Monte-Carlo Updates

Update V π(s) incrementally after episode s1, a1, r2, . . . , sT

For each state st with return Gi ,t

N(st)← N(st) + 1

V π(st)← V π(st) +
1

N(st)
(Gi ,t − V π(st))

In non-stationary problems, it can be useful to track a running mean, i.e. forget old
episodes.

V π(st)← V π(st) + α(Gi ,t − V π(st))
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MC Policy Evaluation

Incremental Monte Carlo (MC) On Policy Evaluation

Sample episode i = si ,1, ai ,1, ri ,1, si ,2, ai ,2, ri ,2, . . . , si ,Ti
, ai ,Ti

, ri ,Ti

Gi ,t = ri ,t + γri ,t+1 + γ2ri ,t+2 + . . . γTi−1ri ,Ti

for t = 1 : Ti where Ti is the length of the i-th episode

V π(sit) = V π(sit) + α(Gi,t − V π(sit))

We will see many algorithms of this form with a learning rate, target, and incremental
update
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MC Policy Evaluation

Policy Evaluation Diagram

s

State

Action
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MC Policy Evaluation

Policy Evaluation Diagram

s

States

Action
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MC Policy Evaluation

Policy Evaluation Diagram

s

States

Actions
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MC Policy Evaluation

Policy Evaluation Diagram

s

T

States

Actions

= Expectation

= Terminal stateT
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MC Policy Evaluation

Monte-Carlo Policy Evaluation

s

T

States

Actions

= Expectation

= Terminal stateT

V π(s) = V π(s)+α(Gi ,t−V π(s))
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MC Policy Evaluation

Monte-Carlo Policy Evaluation

s

TT

States

Actions

= Expectation

= Terminal stateT

V π(s) = V π(s)+α(Gi ,t−V π(s))

MC updates the value estimate
using a sample of the return to
approximate an expectation
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MC Policy Evaluation

Evaluation of the Quality of a Policy Estimation Approach

Consistency: with enough data, does the estimate converge to the true value of the
policy?

Computational complexity: as we get more data, computational cost of updating
estimate

Memory requirements

Statistical efficiency (intuitively, how does the accuracy of the estimate change with the
amount of data)

Empirical accuracy, often evaluated by mean squared error
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MC Policy Evaluation

Evaluation of the Quality of a Policy Estimation: Bias, Variance and MSE

Consider a statistical model that is parameterized by θ and that determines a probability
distribution over observed data P(x |θ)
Consider a statistic θ̂ that provides an estimate of θ and is a function of observed data x

E.g. for a Gaussian distribution with known variance, the average of a set of i.i.d data points
is an estimate of the mean of the Gaussian

Definition: the bias of an estimator θ̂ is:

Biasθ(θ̂) = Ex |θ[θ̂]− θ

Definition: the variance of an estimator θ̂ is:

Var(θ̂) = Ex |θ[(θ̂ − E[θ̂])2]

Definition: mean squared error (MSE) of an estimator θ̂ is:

MSE (θ̂) = Var(θ̂) + Biasθ(θ̂)
2
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MC Policy Evaluation

Evaluation of the Quality of a Policy Estimation: Consistent Estimator

Let n be the number of data points x used to estimate the parameter θ and call the
resulting estimate of θ using that data θ̂n

Consistency

Then the estimator θ̂n is consistent if, for all ϵ > 0:

lim
n→∞

Pr(|θ̂n − θ| > ϵ) = 0

If an estimator is unbiased (bias = 0) is it consistent?
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MC Policy Evaluation

Properties of Monte-Carlo On Policy Evaluators

Properties:

First-visit Monte Carlo

V π estimator is an unbiased estimator of true Eπ[Gt |st = s]
By law of large numbers, as N(s)→∞,V π(s)→ Eπ[Gt |st = s]

Every-visit Monte Carlo

V π every-visit MC estimator is a biased estimator of V π

But consistent estimator and often has better MSE

Incremental Monte Carlo

Properties depends on the learning rate α
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MC Policy Evaluation

Monte-Carlo (MC) Policy Evaluation Key Limitations

Generally high variance estimator

Reducing variance can require a lot of data
In cases where data is very hard or expensive to acquire, or the stakes are high, MC may be
impractical

Requires episodic settings

Episode must end before data from episode can be used to update V
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MC Policy Evaluation

Monte Carlo (MC) Policy Evaluation Summary

Aim: estimate V π(s) given episodes generated under policy π

s1, a1, r1, s2, a2, r2, . . . where the actions are sampled from π

Gt = rt + γrt+1 + γ2rt+2 + γ3rt+3 + . . . under policy π

V π(s) = Eπ[Gt |st = s]

Simple: Estimates expectation by empirical average (given episodes sampled from policy
of interest)

Updates V estimate using sample of return to approximate the expectation

Does not assume Markov process

Converges to true value under some (generally mild) assumptions

Note: Sometimes is preferred over dynamic programming for policy evaluation even if
know the true dynamics model and reward
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MC Policy Evaluation

This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if we don’t have access to true MDP
models

Monte Carlo policy evaluation

Temporal Difference (TD)

Course logistics
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Temporal Difference Learning

Temporal Difference Learning

“If one had to identify one idea as central and novel to reinforcement learning, it would
undoubtedly be temporal-difference (TD) learning.” – Sutton and Barto 2017

Combination of Monte Carlo & dynamic programming methods

Model-free

Can be used in episodic or infinite-horizon non-episodic settings

Immediately updates estimate of V after each (st , at , rt , st+1) tuple
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Temporal Difference Learning

Temporal Difference Learning for Estimating V

Aim: estimate V π(s) online from experience under policy π

Gt = rt + γrt+1 + γ2rt+2 + . . . in MDP M under policy π

In incremental every-visit MC, update towards actual return Gt

V π(st) = V π(st) + α(Gt − V π(st))

Idea: update value V π(st) toward estimated return using rt + γV π(st+1)

V π(st) = V π(st) + α([rt + γV π(st+1)]− V π(st))

Dr. Amey Pore (Winter 2026) Model-Free Policy Evaluation January 21, 2026 31 / 58



Temporal Difference Learning

Temporal Difference [TD(0)] Learning

Aim: estimate V π(s) online from experience under policy π

s1, a1, r1, s2, a2, r2, . . . where the actions are sampled from π

TD(0) learning / 1-step TD learning: update estimate towards target

V π(st) = V π(st) + α([rt + γV π(st+1)]︸ ︷︷ ︸
TD target

−V π(st))

TD(0) error:
δt = rt + γV π(st+1)− V π(st)

Update can be done after each step! (online, model-free) (St ,At ,Rt+1, St+1) tuple

Don’t need episodic setting
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Temporal Difference Learning

Temporal Difference [TD(0)] Learning Algorithm

Input: α

Initialize V π(s) = 0, ∀s ∈ S

Loop

Sample tuple (st , at , rt , st+1)
V π(st) = V π(st) + α([rt + γV π(st+1)]︸ ︷︷ ︸

TD target

−V π(st))
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Temporal Difference Learning

Worked Example TD Learning

Input: α

Initialize V π(s) = 0, ∀s ∈ S

Loop
Sample tuple (st , at , rt , st+1)
V π(st) = V π(st) + α([rt + γV π(st+1)]︸ ︷︷ ︸

TD target

−V π(st))

Example:
Mars rover: R = [1 0 0 0 0 0 + 10] for any action
π(s) = a1∀s, γ = 1. any action from s1 and s7 terminates episode
Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)
TD estimate of all states (init at 0) with α = 1, γ < 1 at end of this episode?

First visit MC estimate of V of each state? [1 γ γ2 0 0 0 0]
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Temporal Difference Learning

Temporal Difference (TD) Policy Evaluation

V π(st) = V π(st) + α([rt + γV π(st+1)]− V π(st))

s

T

TD updates the value
estimate using a sample
of st+1 to approximate an
expectation

TD updates the value es-
timate by bootstrapping,
uses estimate of V (st+1)

States

Actions

= Expectation

T = Terminal state
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Temporal Difference Learning

Think Pair wise 2: Temporal Difference [TD(0)] Learning Algorithm

Input: α

Initialize V π(s) = 0, ∀s ∈ S

Loop

Sample tuple (st , at , rt , st+1)
V π(st) = V π(st) + α([rt + γV π(st+1)]︸ ︷︷ ︸

TD target

−V π(st))

Select all that are true

❶ If α = 0 TD will weigh the TD target more than the past V estimate

❷ If α = 1 TD will update the V estimate to the TD target

❸ If α = 1 TD in MDPs where the policy goes through states with multiple possible next
states, V may oscillate forever

❹ There exist deterministic MDPs where α = 1 TD will converge
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Temporal Difference Learning

Summary: Temporal Difference Learning

Combination of Monte Carlo & dynamic programming methods

Model-free

Bootstraps and samples

Can be used in episodic or infinite-horizon non-episodic settings

Immediately updates estimate of V after each (St ,At ,Rt+1, St+1) tuple

Biased estimator (early on will be influenced by initialization, and won’t be unbiased
estimator)

Generally lower variance than Monte Carlo policy evaluation

Consistent estimator if learning rate α satisfies same conditions specified for incremental
MC policy evaluation to converge

Note: algorithm I introduced is TD(0). In general can have approaches that interpolate
between TD(0) and Monte Carlo approach
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Temporal Difference Learning

Driving Home Example
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Temporal Difference Learning

Driving Home Example: MC vs. TD
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Temporal Difference Learning

Comparison: DP vs MC vs TD

DP MC TD
Data usage All transitions Complete episodes One step
Bootstrapping Yes No Yes
Sampling No Yes Yes
Model required Yes No No
Computational cost High Low Low
Bias Biased Unbiased (First-Visit) Biased
Variance None High Low
Works online2 Yes No Yes
Assumes Markov property Yes No Yes

2Online learning refers to updating estimates step-by-step during an episode, rather than waiting until the
end.
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Temporal Difference Learning

Random Walk: MC vs. TD
E
st
im

a
te
d
V
a
lu
e

R
M
S
er
ro
r
a
ve
ra
g
ed

o
ve
r
st
a
te

Walks/Episodes
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Temporal Difference Learning

Batch MC and TD

Batch (Offline) solution for finite dataset

Given set of K episodes
Repeatedly sample an episode from K
Apply MC or TD(0) to the sampled episode

What do MC and TD(0) converge to?
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Temporal Difference Learning

AB Example

Two states A,B; no discounting; 8 episodes of experience

A, 0, B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

What is V (A),V (B)?
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Temporal Difference Learning

AB Example

Two states A,B; no discounting; 8 episodes of experience

A, 0, B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

What is V (A),V (B)?

A B
r = 0

100%

r = 1

75%

r = 0

25%

Dr. Amey Pore (Winter 2026) Model-Free Policy Evaluation January 21, 2026 44 / 58



Temporal Difference Learning

Batch MC and TD: Convergence

Monte Carlo in batch setting converges to min MSE (mean squared error)
Minimize loss with respect to observed returns
In AB example, V (A) = 0

TD(0) converges to DP policy V π for the MDP with the maximum likelihood model
estimates
Aka same as dynamic programming with certainty equivalence!

Maximum likelihood Markov decision process model

P̂(St+1|St ,At) =
1

N(St ,At)

i∑
k=1

I(Sk = St ,Ak = At , Sk+1 = St+1)

R̂(St ,At) =
1

N(St ,At)

i∑
k=1

I(Sk = St ,Ak = At)Rk+1

Compute V π using this model
In AB example, V (A) = 0.75
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Temporal Difference Learning

This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if we don’t have access to true MDP
models

Monte Carlo policy evaluation

Temporal Difference (TD)

Course logistics
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course logistics

Course Logistics

Those not added on MarkUs: Send an email [CSC415].

Sample Mid-term exam uploaded last week.

Solutions will be out tomorrow.

Lab 2 will be help tomorrow.

Check Piazza for weekly updates.
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course logistics

Project Goals

Please read the project guidelines.

Assignement 1: Literature review and baseline

Topics: Any topic covered in the course
We provided the ones since these are fundamental challenges
Available open-source repos.
Talk to TAs and instructor if outside the pdf

Project proposal:

Based on challenges identified in assignment 1.
Often needs more literature survey
Form an hypothesis, which environments to use

Project report:

Your Investigations
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course logistics

Project Ideas

Please read the project guidelines.

New idea for RL

Introducing new regularization to make learning faster.
New exploration strategy
New architecture of NN

New application of RL

Robotics: Generalization to new objects, colors.
LLMs: reasoning improvements for local LLMs

Future works of existing papers

More ideas here:
https://cs224r.stanford.edu/projects/cs224r_final_projects.html
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course logistics

Thank you!
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course logistics

n-Step Prediction
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course logistics

n-Step Return

Consider the following n-step returns for n = 1, 2,∞:

n = 1 (TD) G
(1)
t = Rt+1 + γV (St+1)

n = 2 G
(2)
t = Rt+1 + γRt+2 + γ2V (St+2)

...
...

n =∞ (MC) G
(∞)
t = Rt+1 + γRt+2 + · · ·+ γT−1RT

Define the n-step return

G
(n)
t = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV (St+n)

n-step temporal-difference learning

V (St)← V (St) + α
(
G

(n)
t − V (St)

)
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course logistics

Large Random walk example
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course logistics

Think pair-wise 1 solution

In a tabular MDP asymptotically value iteration will always yield a policy with the same
value as the policy returned by policy iteration
Answer. True. Both are guaranteed to converge to the optimal value function and a
policy with an optimal value

Can value iteration require more iterations than |A||S | to compute the optimal value
function? (Assume |A| and |S | are small enough that each round of value iteration can be
done exactly).
Answer: True. As an example, consider a single state, single action MDP where
r(s, a) = 1, γ = .9 and initialize V0(s) = 0. V ∗(s) = 1

1−γ but after the first iteration of
value iteration, V1(s) = 1.
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course logistics

Example: Mars Rover - Monte Carlo

Mars rover: R = [1 0 0 0 0 0 + 10] for any action
π(s) = a1 ∀s, γ = 1. Any action from s1 and s7 terminates episode

Trajectory: (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

First visit MC estimate of V of each state?

s1: First visit at end, G = 1, so V (s1) = 1

s2: First visit at t = 1, G1 = 0 + 0 + 1 = 1, so V (s2) = 1 (or γ if γ ̸= 1)

s3: First visit at t = 0, G0 = 0 + 0 + 0 + 1 = 1, so V (s3) = 1 (or γ2 if γ ̸= 1)

Other states: Not visited, V = 0

Answer: [1 γ γ2 0 0 0 0] (with γ = 1: [1 1 1 0 0 0 0])
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course logistics

Example: Mars Rover TD Learning

Initialize V (s) = 0 ∀s
Trajectory: (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

Update rule: V (st)← V (st) + α(rt + γV (st+1)− V (st)) with α = 1

Step 1: (s3
0−→ s2). Target 0 + γV (s2) = 0.

V (s3)← 0 + 1(0− 0) = 0

Step 2: (s2
0−→ s2). Target 0 + γV (s2) = 0.

V (s2)← 0 + 1(0− 0) = 0

Step 3: (s2
0−→ s1). Target 0 + γV (s1) = 0.

V (s2)← 0 + 1(0− 0) = 0

Step 4: (s1
1−→ T ). Target 1 + γ(0) = 1.

V (s1)← 0 + 1(1− 0) = 1

Final estimates: V (s1) = 1, others 0.

Note: V (s2) remains 0 despite being visited, because standard TD(0) bootstraps from the
current estimate of the next state (which was 0).
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course logistics

Think Pair Wise 2 Solution

TD Update Rule: V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St))︸ ︷︷ ︸
TD Error δt

❶ If α = 0 TD will weigh the TD target more than the past V estimate.
False. V (St)← V (St) + 0 · δt = V (St). It keeps the past estimate.

❷ If α = 1 TD will update the V estimate to the TD target.
True. V (St)← V (St) + 1 · (Rt+1 + γV (St+1)− V (St)) = Rt+1 + γV (St+1).

❸ If α = 1 and next states are stochastic, V may oscillate forever.
True. The target Rt+1 + γV (St+1) depends on the sampled St+1 ∼ P(·|St ,At). If St → SA or St → SB ,
V (St) will jump between targets.

❹ There exist deterministic MDPs where α = 1 TD will converge.
True. In deterministic MDPs, Rt+1 and St+1 are fixed for (St ,At). The update V (St)← Rt+1 + γV (St+1)
is equivalent to Value Iteration.
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course logistics

Solution: AB Example

Monte Carlo:

Average return for state A

State A only appears in one episode: A,
0, B, 0

Return for this episode is G = 0 + 0 = 0

Hence, V (A) = 0

Temporal Difference:

For B, TD converges to the average
reward:

V (B) =
6/8× 1 + 2/8× 0

1
= 0.75

For A, TD bootstraps using V (B):

V (A) = 0 + V (B) = 0.75

Dr. Amey Pore (Winter 2026) Model-Free Policy Evaluation January 21, 2026 57 / 58



course logistics

Certainty Equivalence for Mars Rover example

Mars rover: R = [1 0 0 0 0 0 + 10] for any action

π(s) = a1 ∀s, γ = 1. Any action from s1 and s7 terminates episode

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

First visit MC estimate of V of each state? [1 γ γ2 0 0 0 0]

TD estimate of all states (init at 0) with α = 1 is [1 0 0 0 0 0 0]

Optional exercise: What is the certainty equivalent estimate?

r̂ = [1 0 0 0 0 0 0], p̂(terminate|s1, a1) = p̂(s2|s3, a1) = 1

Dr. Amey Pore (Winter 2026) Model-Free Policy Evaluation January 21, 2026 58 / 58



CSC415: Introduction to Reinforcement Learning

Lecture 3: Model-Free Policy Evaluation and Control

Dr. Amey Pore

Winter 2026

January 21, 2026

Material taken from Sutton and Barto: Chapter 5 and Chapter 6. Structure adapted from David Silver’s and

Emma Brunskill’s course on Introduction to RL.



Outline

Today’s Lecture

Last part:

Model-free prediction
Estimate the value function of an unknown MDP

This part:

Model-free control
Optimise the value function of an unknown MDP
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Outline

Uses of Model-Free Control

Some example problems that can be modelled as MDPs

Elevator

Parallel Parking

Ship Steering

Bioreactor

Helicopter

Aeroplane Logistics

Robocup Soccer

Quake

Portfolio management

Protein Folding

Robot walking

Game of Go

For most of these problems, either:

MDP model is unknown, but experience can be sampled

MDP model is known, but is too big to use, except by samples

Model-free control can solve these problems
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Outline

Outline

Monte-Carlo Control

Temporal Difference Methods for Control (SARSA, Q-Learning)
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Monte-Carlo Control

Recall: Generalized Policy Iteration

Policy evaluation Estimate V π

Iterative policy evaluation

Policy improvement Generate π′ ≥ π
Greedy policy improvement
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Monte-Carlo Control

Generalized Policy Iteration with MC evaluation

Policy evaluation: MC policy evaluation, V π

Policy improvement: Greedy policy improvement

Dr. Amey Pore (Winter 2026) Model-Free Control January 21, 2026 6 / 38



Monte-Carlo Control

Model-Free Policy Improvement with Q-Value

Greedy policy improvement over V (s) requires model of MDP

π′(s) = argmax
a∈A

(
R(s, a) + γ

∑
s′∈S

P(s ′|s, a)V πi (s ′)

)

Greedy policy improvement over Q(s, a) is model-free

π′(s) = argmax
a∈A

Qπi (s, a)
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Monte-Carlo Control

Generalized Policy Iteration with Q value function

Policy evaluation: MC policy evaluation, Q = Qπ

Policy improvement: Greedy policy improvement?
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Monte-Carlo Control

Model-free Policy Iteration

Initialize policy π

Repeat:

Policy evaluation: compute Qπ

Policy improvement: update π given Qπ

May need to modify policy evaluation:

If π is deterministic, can’t compute Q(s, a) for any a ̸= π(s)

How to interleave policy evaluation and improvement?

Policy improvement is now using an estimated Q
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Monte-Carlo Control

The Problem of Exploration

Goal: Learn to select actions to maximize total expected future reward

Problem: Can’t learn about actions without trying them (need to explore)

Problem: But if we try new actions, spending less time taking actions that our past
experience suggests will yield high reward (need to exploit knowledge of domain to
achieve high rewards)

Dr. Amey Pore (Winter 2026) Model-Free Control January 21, 2026 10 / 38



Monte-Carlo Control

ϵ-greedy Policies

Simple idea to balance exploration and achieving rewards

Let |A| be the number of actions

with probability 1− ϵ, choose the greedy action.

with probability ϵ, choose an action uniformly at random

π(a|s) =

{
ϵ

|A| + 1− ϵ if a = argmaxa′∈AQ(s, a′)
ϵ

|A| otherwise
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Monte-Carlo Control

Monte-Carlo Policy Iteration

Policy evaluation: MC policy evaluation, Q = Qπ

Policy improvement: ϵ-Greedy policy improvement.
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Monte-Carlo Control

Monte-Carlo Policy Iteration

Policy evaluation: MC policy evaluation, Q ≈ Qπ

Policy improvement: ϵ-Greedy policy improvement.

Dr. Amey Pore (Winter 2026) Model-Free Control January 21, 2026 13 / 38



Monte-Carlo Control

ϵ-Greedy Policy Improvement

Theorem

For any ϵ-greedy policy π, the ϵ-greedy policy π′ with respect to Qπ is an improvement,
V π′

(s) ≥ V π(s)

Proof at the end of the slides.
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Monte-Carlo Control

Recall Monte Carlo Policy Evaluation, Now for Q

1: Initialize Q(s, a) = 0,N(s, a) = 0, ∀(s, a), k = 1, Input ϵ = 1, π
2: loop
3: Sample k-th episode (sk,1, ak,1, rk,1, sk,2, . . . , sk,T ) given π
4: Compute Gk,t = rk,t + γrk,t+1 + · · ·+ γT−1rk,T , ∀t
5: for t = 1, . . . ,T do
6: if First visit to (s, a) in episode k then
7: N(s, a) = N(s, a) + 1
8: Q(st , at) = Q(st , at) +

1
N(s,a) (Gk,t − Q(st , at))

9: end if
10: end for
11: k = k + 1
12: end loop
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Monte-Carlo Control

Monte Carlo Online Control / On Policy Improvement

1: Initialize Q(s, a) = 0,N(s, a) = 0, ∀(a, s), Set ϵ = 1, k = 1
2: πk = ϵ-greedy(Q) // Create initial ϵ-greedy policy
3: loop
4: Sample k-th episode (sk,1, ak,1, rk,1, sk,2, . . . , sk,T ) given πk

5: Compute Gk,t = rk,t + γrk,t+1 + · · ·+ γT−1rk,T
6: for t = 1, . . . ,T do
7: if First visit to (s, a) in episode k then
8: N(s, a) = N(s, a) + 1
9: Q(st , at) = Q(st , at) +

1
N(s,a) (Gk,t − Q(st , at))

10: end if
11: end for
12: k = k + 1, ϵ = 1/k
13: πk = ϵ-greedy(Q) // Policy improvement
14: end loop
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Monte-Carlo Control

Monte Carlo Online Control / On Policy Improvement
1: Initialize Q(s, a) = 0,N(s, a) = 0, ∀(s, a), Set ϵ = 1, k = 1
2: πk = ϵ-greedy(Q) // Create initial ϵ-greedy policy
3: loop
4: Sample k-th episode (sk,1, ak,1, rk,1, sk,2, . . . , sk,T ) given πk

5: Compute Gk,t = rk,t + γrk,t+1 + · · ·+ γT−1rk,T
6: for t = 1, . . . ,T do
7: if First visit to (s, a) in episode k then
8: N(s, a) = N(s, a) + 1
9: Q(st , at) = Q(st , at) +

1
N(s,a) (Gk,t − Q(st , at))

10: end if
11: end for
12: k = k + 1, ϵ = 1/k
13: πk = ϵ-greedy(Q) // Policy improvement
14: end loop

Is Q an estimate of Q∗? When might this procedure fail to compute the optimal Q∗?
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Monte-Carlo Control

Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

All state-action pairs are visited an infinite number of times: lim
i→∞

Ni (s, a)→∞

Behavior policy (policy used to act in the world) converges to greedy policy

A simple GLIE strategy is ϵ-greedy where ϵ is reduced to 0 with the following rate:
ϵi = 1/i

Theorem

GLIE Monte-Carlo control converges to the optimal state-action value function
Q(s, a)→ Q∗(s, a)
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Monte-Carlo Control

Outline

Monte-Carlo Control

Temporal Difference Methods for Control (SARSA, Q-Learning)
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Temporal Difference Control

On-Policy Control with SARSA

Every Time Step

Policy evaluation: SARSA, Q ≈ Qπ

Policy improvement: ϵ-Greedy policy improvement.
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Temporal Difference Control

General Form of SARSA Algorithm

1: Set initial ϵ-greedy policy π, t = 0, initial state s = s0
2: Take at ∼ π(st) // Sample action from policy
3: Observe (rt , st+1)
4: loop
5: Take action at+1 ∼ π(st+1)
6: Observe (rt , st+2)
7: Q(st , at)← Q(st , at) + α(rt + γQ(st+1, at+1)− Q(st , at))
8: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
9: t = t + 1

10: end loop

See worked example with Mars rover at end of slides
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Temporal Difference Control

Convergence Properties of SARSA

Theorem

SARSA for finite-state and finite-action MDPs converges to the optimal action-value,
Q(s, a)→ Q∗(s, a), under the following conditions:

1 The policy sequence πt(a|s) satisfies the condition of GLIE

2 The step-sizes αt satisfy the Robbins-Munro sequence such that

∞∑
t=1

αt =∞ and
∞∑
t=1

α2
t <∞

For ex, αt =
1
t satisfies the above condition.
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Temporal Difference Control

On and Off-Policy Learning

On-policy learning

“Learn on the job”
Learn about policy π from experience sampled from π

Off-policy learning

“Look over someone’s shoulder”
Learn about policy π from experience sampled from µ
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Temporal Difference Control

Off-Policy Learning

Evaluate target policy π(a|s) to compute vπ(s) or qπ(s, a)

While following behaviour policy µ(a|s)
{S1,A1,R2, . . . ,ST} ∼ µ

Why is this important?

Learn from observing humans or other agents
Re-use experience generated from old policies π1, π2, . . . , πt−1

Learn about optimal policy while following exploratory policy
Learn about multiple policies while following one policy
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Temporal Difference Control

Q-Learning: Learning the Optimal State-Action Value

SARSA is an on-policy learning algorithm

SARSA estimates the value of the current behavior policy (policy using to take actions in the
world)
And then updates that (behavior) policy

Alternatively, can we directly estimate the value of π∗ while acting with another behavior
policy πb?

Yes! Q-learning, an off-policy RL algorithm

Dr. Amey Pore (Winter 2026) Model-Free Control January 21, 2026 25 / 38



Temporal Difference Control

Q-Learning

Estimate the Q-value of pi∗ while acting with another behavior policy πb

Key idea: Maintain Q estimates and use bootstrap for best future value.

Recall SARSA

Q(st , at)← Q(st , at) + α((rt + γQ(st+1, at+1))− Q(st , at))

Q-learning

Q(st , at)← Q(st , at) + α((rt + γmax
a′

Q(st+1, a
′))− Q(st , at))
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Temporal Difference Control

Q-Learning with ϵ-greedy Exploration

1: Initialize Q(s, a)← 0,∀s ∈ S, a ∈ A, t = 0, initial state st = s0
2: Set πb to be ϵ-greedy w.r.t. Q
3: loop
4: Take at ∼ πb(st) // Sample action from policy
5: Observe (rt , st+1)
6: Q(st , at)← Q(st , at) + α(rt + γmaxa′ Q(st+1, a

′)− Q(st , at))
7: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
8: t = t + 1
9: end loop

See optional worked example and optional understanding check at the end of the slides
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Temporal Difference Control

Q-Learning Control Algorithm

S,A

S’

R

A’

Q(S ,A)← Q(S ,A) + α (R + γmaxa′ Q(S ′, a′)− Q(S ,A))

Theorem

Q-learning control converges to the optimal action-value function, Q(s, a)→ q∗(s, a)
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Temporal Difference Control

Thank you!
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Temporal Difference Control

Homework: Model-free Generalized Policy Improvement

Consider policy iteration

Repeat:

Policy evaluation: compute Qπ

Policy improvement πi+1(s) = argmaxa Q
πi (s, a)

Question: Is this πi+1 deterministic or stochastic? Assume for each state s there is a
unique maxa Q

πi (s, a).

Answer: Deterministic, Stochastic, Not Sure

Now consider evaluating the policy of this new πi+1. Recall in model-free policy
evaluation, we estimated V π, using π to generate new trajectories

Question: Can we compute Qπi+1(s, a)∀s, a by using this πi+1 to generate new
trajectories?
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Temporal Difference Control

Proof: ϵ-Greedy Policy Improvement

Qπ(s, π′(s)) =
∑
a∈A

π′(a|s)Qπ(s, a)

= ϵ/|A|
∑
a∈A

Qπ(s, a) + (1− ϵ)max
a∈A

Qπ(s, a)

≥ ϵ/|A|
∑
a∈A

Qπ(s, a) + (1− ϵ)
∑
a∈A

π(a|s)− ϵ/|A|
1− ϵ

Qπ(s, a)

=
∑
a∈A

π(a|s)Qπ(s, a) = V π(s)

Therefore from policy improvement theorem, V π′
(s) ≥ V π(s)
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Temporal Difference Control

Optional Worked Example: MC for On Policy Control Solution

Mars rover with new actions:

r(−, a1) = [1 0 0 0 0 0 + 10], r(−, a2) = [0 0 0 0 0 0 + 5], γ = 1.

Assume current greedy π(s) = a1∀s, ϵ = 0.5. Q(s, a) = 0 for all (s, a)

Sample trajectory from ϵ-greedy policy

Trajectory = (s1, a1, 0, s2, 0, s2, 0, s2, 0, s1, a1, 1, terminal)

First visit MC estimate of Q of each (s, a) pair?

Q∗
−,a1 = [1 0 0 0 0 0 0]

After this trajectory:

Q∗
−,a2 = [0 1 0 0 0 0 0]

The new greedy policy would be: π = [1 2 1 tie tie tie tie]

If ϵ = 1/3, prob of selecting a1 in s1 in the new ϵ-greedy policy is 5/6.
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Temporal Difference Control

Q-Learning with ϵ-greedy Exploration

What conditions are sufficient to ensure that Q-learning with ϵ-greedy exploration
converges to optimal Q∗?

What conditions are sufficient to ensure that Q-learning with ϵ-greedy exploration
converges to optimal π∗?
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Temporal Difference Control

Worked Example: SARSA for Mars Rover

1: Set initial ϵ-greedy policy π, t = 0, initial state s = s0
2: Take at ∼ π(st) // Sample action from policy
3: Observe (rt , st+1)
4: loop
5: Take action at+1 ∼ π(st+1)
6: Observe (rt , st+2)
7: Q(st , at)← Q(st , at) + α(rt + γQ(st+1, at+1)− Q(st , at))
8: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
9: t = t + 1

10: end loop

Initialize ϵ = 1/k, k = 1, and α = 0.5, Q(−, a) = [1 0 0 0 0 0 + 10]

Q(−, a2) = [0 0 0 0 0 0 + 5], γ = 1

Assume using same trajectory as example above
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Temporal Difference Control

Worked Example: SARSA for Mars Rover

1: Set initial ϵ-greedy policy π, t = 0, initial state s = s0
2: Take at ∼ π(st) // Sample action from policy
3: Observe (rt , st+1)
4: loop
5: Take action at+1 ∼ π(st+1)
6: Observe (rt , st+2)
7: Q(st , at)← Q(st , at) + α(rt + γQ(st+1, at+1)− Q(st , at))
8: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
9: t = t + 1

10: end loop

Initialize ϵ = 1/k, k = 1, and α = 0.5, Q(−, a) = [1 0 0 0 0 0 + 10]

Q(−, a2) = [0 0 0 0 0 0 + 5], γ = 1

Q(s4, a2) = 5.0 + 5 · (0 + Q(s2, a1)) = 2.5
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Temporal Difference Control

Worked Example: ϵ-greedy Q-Learning Mars

1: Initialize Q(s, a)← 0,∀s ∈ S, a ∈ A, t = 0, initial state st = s0
2: Set πb to be ϵ-greedy w.r.t. Q
3: loop
4: Take at ∼ πb(st) // Sample action from policy
5: Observe (rt , st+1)
6: Q(st , at)← Q(st , at) + α(rt + γmaxa′ Q(st+1, a

′)− Q(st , at))
7: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
8: t = t + 1
9: end loop

Initialize ϵ = 1/k, k = 1, and α = 0.5, Q(−, a) = [1 0 0 0 0 0 + 10]

Q(−, a2) = [0 0 0 0 0 0 + 5], γ = 1

Like in SARSA example, start in s6 and take a1
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Temporal Difference Control

Worked Example: ϵ-greedy Q-Learning Mars
1: Initialize Q(s, a)← 0,∀s ∈ S, a ∈ A, t = 0, initial state st = s0
2: Set πb to be ϵ-greedy w.r.t. Q
3: loop
4: Take at ∼ πb(st) // Sample action from policy
5: Observe (rt , st+1)
6: Q(st , at)← Q(st , at) + α(rt + γmaxa′ Q(st+1, a

′)− Q(st , at))
7: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
8: t = t + 1
9: end loop

Initialize ϵ = 1/k, k = 1, and α = 0.5, Q(−, a) = [1 0 0 0 0 0 + 10]

Q(−, a2) = [0 0 0 0 0 0 + 5], γ = 1

Like in SARSA example, start in s4 and a2: Lt(s4, a2) = 0− 5 · 0.1 = −0.5

Recall that in the SARSA update we saw Q(s4, a2) = 2.5 because we used the actual action taken

Does how Q is initialized matter (initially asymptotically)?
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Temporal Difference Control

(Optional) Think pair wise: SARSA and Q-Learning

SARSA: Q(st , at)← Q(st , at) + α(rt + γQ(st+1, at+1)− Q(st , at))

Q-Learning: Q(st , at)← Q(st , at) + α(rt + γmaxa′ Q(st+1, a
′)− Q(st , at))

Select all that are true

Both SARSA and Q-learning may update their policy after every step

If ϵ = 0 for all time steps, and Q is initialized randomly, a SARSA Q state update will be
the same as a Q-learning Q state update

Not sure
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Temporal Difference Control

(Optional) Think pair wise: SARSA and Q-Learning Solutions

SARSA: Q(st , at)← Q(st , at) + α(rt + γQ(st+1, at+1)− Q(st , at))

Q-Learning: Q(st , at)← Q(st , at) + α(rt + γmaxa′ Q(st+1, a
′)− Q(st , at))

Select all that are true

Both SARSA and Q-learning may update their policy after every step

If ϵ = 0 for all time steps, and Q is initialized randomly, a SARSA Q state update will be
the same as a Q-learning Q state update

Not sure
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