
CSC415: Introduction to Reinforcement Learning

Lecture 4: Function Approximation and Deep Q-Learning

Dr. Amey Pore

Winter 2026

January 28, 2026

Material taken from Sutton and Barto: Chp 5.2, 5.4, 6.4-6.5, 6.7. Structure adapted from David Silver’s and

Emma Brunskill’s course on Introduction to RL.



Class Structure

Last lecture:

Model-free prediction
Model-free Control

This lecture:

How to scale RL

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 2 / 61



Outline

Today’s Outline

Recall

Model Free Value Function Approximation

Policy Evaluation
Monte Carlo Policy Evaluation
Temporal Difference (TD) Policy Evaluation

Course Logistics

Control using Value Function Approximation

Control using General Value Function Approximation
SARSA with Function Approximation
Deep Q-Learning

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 3 / 61



Recall

RL Learning Paradigms

Type Description

On-Policy Learn to estimate and evaluate a policy from experience obtained
from following that policy

Off-Policy Learn to estimate and evaluate a policy using experience gathered
from following a different policy

Online Agent updates its policy while interacting with the environment in
real-time

Offline Agent learns from a fixed dataset of prior experience without further
interaction

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 4 / 61



Recall

SARSA

SARSA (State-Action-Reward-State-Action) is an on-policy TD control algorithm.

SARSA Update

Q(st , at)← Q(st , at) + α (rt + γQ(st+1, at+1)− Q(st , at))

Key Characteristics:

On-policy: Learns action-value function for the current policy π

Uses the actual action taken in next state at+1

Considers the policy’s exploration behavior

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 5 / 61



Recall

SARSA Algorithm

1: Set initial ϵ-greedy policy π, t = 0, initial state s = s0
2: Take at ∼ π(st) // Sample action from policy
3: Observe (rt , st+1)
4: loop
5: Take action at+1 ∼ π(st+1)
6: Observe (rt , st+2)
7: Q(st , at)← Q(st , at) + α(rt + γQ(st+1, at+1)− Q(st , at))
8: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
9: t = t + 1

10: end loop

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 6 / 61



Recall

Q-Learning

Q-Learning is an off-policy TD control algorithm that learns the optimal action-value function
Q∗ directly.

Q-Learning Update

Q(st , at)← Q(st , at) + α

(
rt + γmax

a′
Q(st+1, a

′)− Q(st , at)

)

Key Characteristics:

Off-policy: Learns Q∗ independent of the policy being followed

Uses the best action in next state: maxa′ Q(st+1, a
′)

Can learn optimal policy while following exploratory policy (e.g., ϵ-greedy)

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 7 / 61



Recall

Q-Learning Algorithm

1: Initialize Q(s, a)← 0,∀s ∈ S, a ∈ A, t = 0, initial state st = s0
2: Set πb to be ϵ-greedy w.r.t. Q
3: loop
4: Take at ∼ πb(st) // Sample action from policy
5: Observe (rt , st+1)
6: Q(st , at)← Q(st , at) + α(rt + γmaxa′ Q(st+1, a

′)− Q(st , at))
7: π(st) = argmaxa Q(st , a) w.prob 1− ϵ, else random
8: t = t + 1
9: end loop

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 8 / 61



Recall

Recall: Cliff Walking Example

Q-Learning (Off-policy): Learns the
optimal path along the cliff edge. Falls
more often during exploration.

SARSA (On-policy): Learns a safer path
away from the edge to account for
ϵ-greedy exploration errors.

Demonstrates difference between learning
optimal policy Q∗ vs policy being followed
Qπ.

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 9 / 61



Recall

Relationship Between DP and TD

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 10 / 61



Recall

Relationship Between DP and TD (2)

Full Backup (DP) Sample Backup (TD)

Iterative Policy Evaluation TD Learning

V (st)← E[rt + γV (st+1) | st ] V (st)
α←− rt + γV (st+1)

Q-Policy Iteration Sarsa

Q(st , at)← E[rt + γQ(st+1, at+1) | st , at ] Q(st , at)
α←− rt + γQ(st+1, at+1)

Q-Value Iteration Q-Learning

Q(st , at)← E [rt + γmaxa′ Q(st+1, a
′) | st , at ] Q(st , at)

α←− rt + γmaxa′ Q(st+1, a
′)

where x
α←− y ≡ x ← x + α(y − x)

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 11 / 61



Recall

Think Pair wise

Q1: Convergence to Q∗

Which of the following conditions are sufficient to ensure that Q-learning eventually learns the optimal
action-value function Q∗, even if the agent is using ϵ-greedy exploration? (Select all that apply)

A) The exploration rate ϵ must eventually decay to zero.

B) Every state-action pair (s, a) is visited an infinite number of times.

C) The learning rate α satisfies the Robbins-Monro conditions.

D) The agent must follow the optimal policy π∗ at all times during training.

Q2: Convergence to Optimal Policy π∗ in Cliff Walking
In a gridworld like Cliff Walking, what must happen for an ϵ-greedy Q-learning agent to eventually converge to
the optimal policy π∗ (the shortest path)? (Select all that apply)

A) The agent must meet the GLIE (Greedy in the Limit with Infinite Exploration) conditions.

B) The exploration rate ϵ must be held at a constant non-zero value (e.g., ϵ = 0.1).

C) The exploration rate ϵt must approach zero as the number of episodes t → ∞.

D) The agent must switch to an on-policy algorithm like Sarsa.

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 12 / 61



Outline

Today’s Outline

Recall

Model Free Value Function Approximation
Policy Evaluation
Monte Carlo Policy Evaluation
Temporal Difference (TD) Policy Evaluation

Course Logistics

Control using Value Function Approximation

Control using General Value Function Approximation
SARSA with Function Approximation
Deep Q-Learning

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 13 / 61



Function Approximation

Limitations of Tabular Q-Learning

Challenges with Large MDPs

Memory: Too many states to store. Q(s, a) for every state-action pair (e.g., Atari:
25684×84 states, Chess: ≈ 10120 states)

Generalization: Can’t generalize to unseen states

Sample efficiency: Need to visit every state-action pair many times

Continuous states: Impossible to enumerate all states

Desired Properties: Want more compact representation that generalizes across state or
states and actions:

Reduce memory needed to store (P,R)/V /Q/π

Reduce computation needed to compute (P,R)/V /Q/π

Reduce experience needed to find a good (P,R)/V /Q/π

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 14 / 61



Function Approximation

Value Function Approximation

Solution: Use function approximation to estimate value function

Function Approximation

Instead of storing V (s) or Q(s, a) for each state/state-action pair, we approximate using a
parameterized function:

V̂ (s;w) ≈ V π(s), Q̂(s, a;w) ≈ Qπ(s, a)

where w are parameters (e.g., weights in neural network, linear function approximator)

Generalize from seen states to unseen states.

Update parameters w using MC or TD learning.

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 15 / 61



Function Approximation

Types of Value Function Approximation

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 16 / 61



Function Approximation

Which Function Approximator?

We can approximate value functions using many different function approximators:

Linear Combinations of Features

Neural Network

Decision Tree

Nearest Neighbors

....

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 17 / 61



Function Approximation

Which Function Approximator to choose?

We need to choose a function approximator based on:

State space: Discrete vs continuous, low vs high dimensional

Differentiable: Need gradients for gradient descent?

Interpretability: Do we need to understand the function?

Convergence: Does it converge to optimal solution?

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 18 / 61



Function Approximation

State-Action Value Function Approximation for Policy Evaluation with an
Oracle

First assume we could query any state s and action a and an oracle would return the true
value for Qπ(s, a)

Similar to supervised learning: assume given ((s, a),Qπ(s, a)) pairs

The objective is to find the best approximate representation of Qπ given a particular
parameterized function Q̂(s, a;w)

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 19 / 61



Function Approximation

Gradient Descent

Let J(w) be a differentiable function of parameter vector w

Define the gradient of J(w) to be

∇wJ(w) =


∂J(w)
∂w1
...

∂J(w)
∂wn


To find a local minimum of J(w)

Adjust w in direction of -ve gradient

∆w = −1

2
α∇wJ(w)

where α is a step-size parameter

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 20 / 61



Function Approximation

Value Function approximation by Stochastic Gradient Descent

Goal: Find the parameter vector w that minimizes the loss between a true value function
Qπ(s, a) and its approximation Q̂(s, a;w).

Generally use mean squared error and define the loss as

J(w) = Eπ[(Q
π(s, a)− Q̂(s, a;w))2]

Can use gradient descent to find a local minimum

∆w = −1

2
α∇wJ(w)

Stochastic gradient descent (SGD) uses a finite number of (often one) samples to
compute an approximate gradient:

∇wJ(w) = ∇wEπ[Q
π(s, a)− Q̂(s, a;w)]2

= −2Eπ[(Q
π(s, a)− Q̂(s, a;w))∇wQ̂(s, a,w)]

Expected SGD is the same as the full gradient update
Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 21 / 61



Function Approximation

Feature Vectors

Represent state by a feature vector

x(S) =

x1(S)
...

xn(S)


For example:

Distance of robot from landmarks
Trends in the stock market
Piece and pawn configurations in chess

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 22 / 61



Function Approximation

Linear Value Function Approximation

Represent value function by a linear combination of features

v̂(S ,w) = x(S)⊤w =
n∑

j=1

xj(S)wj

Objective function is quadratic in parameters w

J(w) = Eπ[(vπ(S)− x(S)⊤w)2]

Stochastic gradient descent converges on global optimum

Update rule is particularly simple

∇wv̂(S ,w) = x(S)

∆w = α(vπ(S)− v̂(S ,w))x(S)

Update = step-size × prediction error × feature value

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 23 / 61



Function Approximation

Table Lookup Features

Table lookup is a special case of linear value function approximation

Using table lookup features

xtable(S) =

1(S = s1)
...

1(S = sn)


Parameter vector w gives value of each individual state

v̂(S ,w) =

1(S = s1)
...

1(S = sn)

 ·
w1

...
wn


Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 24 / 61



Function Approximation

Model Free VFA Policy Evaluation

No oracle to tell true Qπ(s, a) for any state s and action a

Recall model-free policy evaluation (Lecture 3)

Following a fixed policy π (or had access to prior data)
Goal is to estimate V π and/or Qπ

Maintained a lookup table to store estimates V π and/or Qπ

Updated these estimates after each episode (Monte Carlo methods) or after each step
(TD methods)

Now: in value function approximation, change the estimate update step to
include fitting the function approximator

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 25 / 61



Function Approximation

Monte Carlo Value Function Approximation

Return Gt is an unbiased but noisy sample of the true expected return Qπ(st , at)

Therefore can reduce MC VFA to doing supervised learning on a set of (state, action,
return) pairs:

⟨(s1, a1),G1⟩, ⟨(s2, a2),G2⟩, . . . , ⟨(sT , aT ),GT ⟩

Substitute Gt for the true Qπ(st , at) when fit function approximator

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 26 / 61



Function Approximation

MC Value Function Approximation for Policy Evaluation

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 27 / 61



Function Approximation

Recall: Temporal Difference Learning w/ Lookup Table

Uses bootstrapping and sampling to approximate V π

Updates V π(s) after each transition (s, a, r , s ′):

V π(s) = V π(s) + α(r + γV π(s ′)− V π(s))

Target is r + γV π(s ′), a biased estimate of the true value V π(s)

Represent value for each state with a separate table entry

Note: Unlike MC we will focus on V instead of Q for policy evaluation here, because
there are more ways to create TD targets from Q values than V values

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 28 / 61



Function Approximation

Temporal Difference TD(0) Learning with Value Function Approximation

Uses bootstrapping and sampling to approximate true V π

Updates estimate V π(s) after each transition (s, a, r , s ′):

V π(s) = V π(s) + α(r + γV π(s ′)− V π(s))

Target is r + γV π(s ′), a biased estimate of the true value V π(s)

In value function approximation, target is r + γV π(s ′;w), a biased and approximated
estimate of the true value V π(s)

3 forms of approximation:
1 Sampling
2 Bootstrapping
3 Value function approximation

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 29 / 61



Function Approximation

Temporal Difference TD(0) Learning with Value Function Approximation

In value function approximation, target is r + γV̂ π(s ′;w), a biased and approximated
estimate of the true value V π(s)

Can reduce doing TD(0) learning with value function approximation to supervised
learning on a set of data pairs:

(s1, r1 + γV̂ π(s2;w)), (s2, r2 + γV̂ π(s3;w)), . . .

Find weights to minimize mean squared error

J(w) = Eπ[(rj + γV̂ π(sj+1;w)− V̂ (sj ;w))2]

Use stochastic gradient descent, as in MC methods

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 30 / 61



Function Approximation

TD(0) Value Function Approximation for Policy Evaluation

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 31 / 61



Function Approximation

Convergence of Prediction Algorithms

On/Off-Policy Algorithm Table Lookup Linear Non-Linear

On-Policy
MC ✓ ✓ ✓
TD(0) ✓ ✓ ✗

Off-Policy
MC ✓ ✓ ✓
TD(0) ✓ ✗ ✗

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 32 / 61



Outline

Today’s Outline

Recall

Model Free Value Function Approximation

Policy Evaluation
Monte Carlo Policy Evaluation
Temporal Difference (TD) Policy Evaluation

Course Logistics

Control using Value Function Approximation

Control using General Value Function Approximation
SARSA with Function Approximation
Deep Q-Learning

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 33 / 61



Course Logistics

Course Logistics

Tomorrow’s Mid-term will be held in DH2080: 90 mins.

Assignment 1 is out. Due Feb 13th

Project topics are updated.

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 34 / 61



Course Logistics

Groups

Groups are created on Quercus. You can self-assign.

If you have already formed groups, you can strategically choose the papers to review for
A1.

Project topics are updated.

Groups are created on Quercus. You can self-assign.

If you have already formed groups, you can strategically choose the papers to review for
A1.

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 35 / 61



Break

Break

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 36 / 61



Outline

Today’s Outline

Recall

Model Free Value Function Approximation

Policy Evaluation
Monte Carlo Policy Evaluation
Temporal Difference (TD) Policy Evaluation

Course Logistics

Control using Value Function Approximation
Control using General Value Function Approximation
SARSA with Function Approximation
Deep Q-Learning

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 37 / 61



Outline

Control with Value Function Approximation

Policy evaluation Approximate policy evaluation, Q̂π(s, a;w) ≈ Qπ

Policy improvement ϵ-greedy policy improvement

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 38 / 61



Outline

Action-Value Function Approximation with an Oracle

Q̂π(s, a;w) ≈ Qπ

Minimize the mean-squared error between the true action-value function Qπ(s, a) and the
approximate action-value function:

J(w) = Eπ[(Q
π(s, a)− Q̂π(s, a;w))2]

Use stochastic gradient descent to find a local minimum

∇wJ(w) = −2E
[
(Qπ(s, a)− Q̂π(s, a;w))∇wQ̂

π(s, a;w)
]

Stochastic gradient descent (SGD) samples the gradient

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 39 / 61



Outline

Incremental Model-Free Control Approaches

Similar to policy evaluation, true state-action value function for a state is unknown and so
substitute a target value for true Q(st , at)

∆w = α(Q(st , at)− Q̂(st , at ;w))∇wQ̂(st , at ;w)

In Monte Carlo methods, use a return Gt as a substitute target

∆w = α(Gt − Q̂(st , at ;w))∇wQ̂(st , at ;w)

SARSA: Use TD target r + γQ̂(s ′, a′;w) which leverages the current function
approximation value

∆w = α(r + γQ̂(s ′, a′;w)− Q̂(s, a;w))∇wQ̂(s, a;w)

Q-learning: Uses related TD target r + γmaxa′ Q̂(s ′, a′;w)

∆w = α(r + γmax
a′

Q̂(s ′, a′;w)− Q̂(s, a;w))∇wQ̂(s, a;w)

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 40 / 61



Outline

”Deadly Triad” which Can Cause Instability

Informally, updates involve doing an (approximate) Bellman backup followed by best
trying to fit underlying value function to a particular feature representation

Bellman operators are contractions, but value function approximation fitting can be an
expansion

To learn more, see Baird example in Sutton and Barto 2018

”Deadly Triad” can lead to oscillations or lack of convergence

Bootstrapping
Function Approximation
Off policy learning (e.g. Q-learning)

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 41 / 61



Outline

Example: Mountain Car

Mountain Car Problem

Car stuck in valley between two hills

Goal: Reach the top of the right hill

State: Position and velocity

Actions: Accelerate left, coast, accelerate right

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 42 / 61



Outline

Linear SARSA in Mountain Car

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 43 / 61



Outline

Linear Sarsa with Radial Basis Functions in Mountain Car

https://github.com/Ameyapores/MountainCar-SARSA

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 44 / 61

https://github.com/Ameyapores/MountainCar-SARSA


Outline

Convergence of Control Algorithms

Algorithm Table Lookup Linear Non-Linear

Monte-Carlo Control ✓ (✓) ✗

Sarsa ✓ (✓) ✗

Q-learning ✓ ✗ ✗

(✓) = chatters around near-optimal value function

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 45 / 61



Deep Q-Network (DQN)

Using these ideas to do Deep RL in Atari

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 46 / 61



Deep Q-Network (DQN)

Q-Learning with Neural Networks

Q-learning converges to optimal Q∗(s, a) using tabular representation

In value function approximation Q-learning minimizes MSE loss by stochastic gradient
descent using a target Q estimate instead of true Q

But Q-learning with VFA can diverge

Two of the issues causing problems:

Correlations between samples
Non-stationary targets

Deep Q-learning (DQN) addresses these challenges by using

Experience replay
Fixed Q-targets

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 47 / 61



Deep Q-Network (DQN)

DQNs: Experience Replay

To help remove correlations, store dataset (called a replay buffer) D from prior
experience

s1, a1, r2, s2
s2, a2, r3, s3

. . .

st , at , rt+1, st+1

→ s, a, r , s ′

To perform experience replay, repeat the following:
(s, a, r , s ′) ∼ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + γmaxa′ Q̂(s ′, a′;w)
Use stochastic gradient descent to update the network weights

∆w = α(r + γmax
a′

Q̂(s ′, a′;w)− Q̂(s, a;w))∇wQ̂(s, a;w)

Uses target as a scalar, but function weights will get updated on the next round,
changing the target value

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 48 / 61



Deep Q-Network (DQN)

DQNs: Fixed Q-Targets

To help improve stability, fix the target weights used in the target calculation for
multiple updates

Target network uses a different set of weights than the weights being updated

Let parameters w− be the set of weights used in the target, and w be the weights that
are being updated

Slight change to computation of target value:

(s, a, r , s ′) ∼ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + γmaxa′ Q̂(s ′, a′;w−)
Use stochastic gradient descent to update the network weights

∆w = α(r + γmax
a′

Q̂(s ′, a′;w−)− Q̂(s, a;w))∇wQ̂(s, a;w)

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 49 / 61



Deep Q-Network (DQN)

DQN Pseudocode

1: Input: E , α, s, a, r , s′ ∼ π; Initialize D = ∅, w = 0
2: Set other state w0

3: for episode = 1, . . . ,E do do
4: Initialize s1
5: for t = 1, . . . ,T do do
6: Observe reward rt and next state st+1

7: Store transition (st , at , rt , st+1) in replay buffer D
8: for i = 1, . . . ,K do do
9: Sample random minibatch of transitions (s, a, r , s′) from D
10: if st+1 is terminal at step t + 1 then then
11: Set yt = rt
12: else
13: Set yt = rt + γmaxa′ Q̂(st+1, a′;w−)
14: end if
15: Perform gradient descent step on (yt − Q̂(st , at ;w))2 w.r.t. w
16: end for
17: Every C steps: w− = w
18: end for
19: end for

Note: There are several
hyperparameters and algorithm choices.
One needs to choose the neural network
architecture, the learning rate, how
often to update the target network.
Often a minibatch buffer is used, not
just for experience replay, but also to do
batch updates of network weights. This
is because a key benefit of neural
network architectures is a parameter is
updated the cost of passing a
mini-batch through the network is about
the same as for one sample.

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 50 / 61



Deep Q-Network (DQN)

Check Your Understanding L4N3: Fixed Targets

In DQN we compute the target value for the sampled (s, a, r , s ′) using a separate set of
target weights: r + γmaxa′ Q̂(s ′, a′;w−)

Select all that are true

This doubles the computation time compared to a method that does not have a separate set
of weights
This doubles the memory requirements compared to a method that does not have a separate
set of weights
Not sure

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 51 / 61



Deep Q-Network (DQN)

DQNs Summary

DQN uses experience replay and fixed Q-targets

Store transition (st , at , rt+1, st+1) in replay memory D
Sample random mini-batch of transitions (s, a, r , s ′) from D
Compute Q-learning targets w.r.t. old, fixed parameters w−

Optimizes MSE between Q-network and Q-learning targets

Uses stochastic gradient descent

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 52 / 61



Deep Q-Network (DQN)

DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s

Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

Used a deep neural network with CNN

Network architecture and hyperparameters fixed across all games

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 53 / 61



Deep Q-Network (DQN)

DQN

Figure: Human-level control through deep reinforcement learning. Mnih et al, 2015

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 54 / 61



Deep Q-Network (DQN)

DQN Results in Atari

Figure: Human-level control through deep reinforcement learning. Mnih et al, 2015

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 55 / 61



Deep Q-Network (DQN)

Which Aspects of DQN were Important for Success?

Game Linear Deep Network

Breakout 3 3
Enduro 62 29
River Raid 2345 1453
Seaquest 656 275
Space Invaders 301 302

Note: just using a deep NN actually hurt performance sometimes!

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 56 / 61



Deep Q-Network (DQN)

Which Aspects of DQN were Important for Success?

Game Linear Deep Network DQN w/ fixed Q

Breakout 3 3 10
Enduro 62 29 141
River Raid 2345 1453 2868
Seaquest 656 275 1003
Space Invaders 301 302 373

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 57 / 61



Deep Q-Network (DQN)

Which Aspects of DQN were Important for Success?

Game Linear
Deep

Network
DQN w/
fixed Q

DQN w/
replay

DQN w/replay
and fixed Q

Breakout 3 3 10 241 317
Enduro 62 29 141 831 1006
River Raid 2345 1453 2868 4102 7447
Seaquest 656 275 1003 823 2894
Space Invaders 301 302 373 826 1089

Replay is hugely important

Why? Beyond helping with correlation between samples, what does replaying do?

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 58 / 61



Deep Q-Network (DQN)

Deep RL

Success in Atari has led to huge excitement in using deep neural networks to do value
function approximation in RL

Some immediate improvements (many others!)

Double DQN (Deep Reinforcement Learning with Double Q-Learning, Hasselt et al, AAAI
2016)
Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)
Dueling DQN (best paper ICML 2016) (Dueling Network Architectures for Deep
Reinforcement Learning, Wang et al)

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 59 / 61



Summary

What You Should Understand (for mid-term)

Be able to implement Policy Iteration and Value Iteration.

Be able to implement TD(0) and MC on policy evaluation

Be able to implement Q-learning and SARSA and MC control algorithms

Know about MDP structure

Key features in DQN and function approximation that are critical.

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 60 / 61



Summary

Thank You!

Questions?

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026 61 / 61


	Outline
	Recall
	Outline
	Function Approximation
	Outline
	Course Logistics
	Break
	Outline
	Deep Q-Network (DQN)
	Summary

