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Material taken from Sutton and Barto: Chp 5.2, 5.4, 6.4-6.5, 6.7. Structure adapted from David Silver's and

Emma Brunskill’s course on Introduction to RL.



Class Structure

@ Last lecture:

o Model-free prediction
o Model-free Control

@ This lecture:
e How to scale RL
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Today's Outline

o Recall
@ Model Free Value Function Approximation
e Policy Evaluation
e Monte Carlo Policy Evaluation
o Temporal Difference (TD) Policy Evaluation
@ Course Logistics
@ Control using Value Function Approximation

o Control using General Value Function Approximation
o SARSA with Function Approximation
o Deep Q-Learning
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RL Learning Paradigms

Type Description

On-Policy | Learn to estimate and evaluate a policy from experience obtained
from following that policy

Off-Policy | Learn to estimate and evaluate a policy using experience gathered
from following a different policy

Online Agent updates its policy while interacting with the environment in
real-time

Offline Agent learns from a fixed dataset of prior experience without further
interaction
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SARSA

SARSA (State-Action-Reward-State-Action) is an on-policy TD control algorithm.

SARSA Update

Q(st, ar)  Q(st, ar) + a(re + vQ(St+1, ary1) — Q(st, at))

Key Characteristics:
@ On-policy: Learns action-value function for the current policy 7
@ Uses the actual action taken in next state a;y1

@ Considers the policy’s exploration behavior
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SARSA Algorithm

1: Set initial e-greedy policy 7, t = 0, initial state s = sp
2: Take a; ~ 7(s;) // Sample action from policy
3: Observe (rt, ser1)
4: loop
5: Take action azy1 ~ 7(St+1)
6: Observe (rt, St42)
7 Q(st,ar) < Q(st, ar) + a(re + YQ(St+1, ar+1) — Q(st, ar))
8: 7(s¢) = arg max, Q(s¢, a) w.prob 1 — ¢, else random
9: t=t+1
10: end loop
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Recall

Q-Learning

Q-Learning is an off-policy TD control algorithm that learns the optimal action-value function
Q" directly.

Q-Learning Update

Q(St7 at) — Q(St, at) + « (l’t + v maé,\X Q(5t+1, 3,) — Q(St, 3t)>

Key Characteristics:

o Off-policy: Learns Q* independent of the policy being followed
@ Uses the best action in next state: maxy Q(st+1,a’)

@ Can learn optimal policy while following exploratory policy (e.g., e-greedy)
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Q-Learning Algorithm

1: Initialize Q(s,a) + 0,Vs € S,a € A, t =0, initial state s; = s9

2: Set 7p to be e-greedy w.r.t. Q

3: loop

4 Take a; ~ mp(s¢) // Sample action from policy

5: Observe (rt, St+1)

6: Q(st, ar) < Q(st, ar) + o re + v maxy Q(se41,a’) — Q(st, ar))
7 m(s;) = arg max, Q(st, a) w.prob 1 — ¢, else random

8: t=t+1

9: end loop
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Recall: Cliff Walking Example

F=-1 | j—t —— +—1 —t safe path
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Recall

Relationship Between DP and TD

Full Backup (DP) Sample Backup (TD)
.‘;/}r:{\ 2
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Bellman Expectation wrd bd b
Equation for v, (s) Iterative Policy Evaluation TD Learning
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Bellman Expectation saredd w e .
Equation for gq.(s, a) Q-Policy Iteration Sarsa
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Bellman Optimality searewd % 4
Equation for g.(s, a) Q-Value Iteration Q-Learning
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Relationship Between DP and TD (2)

Full Backup (DP) Sample Backup (TD)

Iterative Policy Evaluation TD Learning

V(st) < E[re +vV(st+1) | st V(st) <= re +vV(st11)

Q-Policy Iteration Sarsa

Q(st, ar) < E[re + vQ(st41, ae+1) | ¢, Q(st, a) <= re + 7Q(se+1, ar41)
Q-Value lteration Q-Learning

Q(st, at) « E[re + vy maxy Q(sev1,d) | se,at] | Q(st,ar) <& re 4+ vy maxy Q(s11,3")

where x <& y = x « x4+ ay — x)
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Think Pair wise

Q1: Convergence to Q"
Which of the following conditions are sufficient to ensure that Q-learning eventually learns the optimal
action-value function Q*, even if the agent is using e-greedy exploration? (Select all that apply)

A) The exploration rate € must eventually decay to zero.

B) Every state-action pair (s, a) is visited an infinite number of times.
C) The learning rate « satisfies the Robbins-Monro conditions.
D) The agent must follow the optimal policy 7#* at all times during training.

Q2: Convergence to Optimal Policy 7* in Cliff Walking
In a gridworld like Cliff Walking, what must happen for an e-greedy Q-learning agent to eventually converge to
the optimal policy 7™ (the shortest path)? (Select all that apply)

A) The agent must meet the GLIE (Greedy in the Limit with Infinite Exploration) conditions.
B) The exploration rate e must be held at a constant non-zero value (e.g., ¢ = 0.1).

C) The exploration rate e; must approach zero as the number of episodes t — co.

D) The agent must switch to an on-policy algorithm like Sarsa.
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Today's Outline

o Recall
@ Model Free Value Function Approximation
e Policy Evaluation
e Monte Carlo Policy Evaluation
o Temporal Difference (TD) Policy Evaluation
@ Course Logistics
@ Control using Value Function Approximation

o Control using General Value Function Approximation
o SARSA with Function Approximation
o Deep Q-Learning
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Function Approximation

Limitations of Tabular Q-Learning

Challenges with Large MDPs

@ Memory: Too many states to store. Q(s, a) for every state-action pair (e.g., Atari:
25684%84 states, Chess: ~ 10?0 states)

o Generalization: Can't generalize to unseen states
o Sample efficiency: Need to visit every state-action pair many times

o Continuous states: Impossible to enumerate all states

Desired Properties: Want more compact representation that generalizes across state or
states and actions:

@ Reduce memory needed to store (P,R)/V/Q/x
@ Reduce computation needed to compute (P,R)/V/Q/x
@ Reduce experience needed to find a good (P,R)/V/Q/7
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Function Approximation

Value Function Approximation

Solution: Use function approximation to estimate value function

Function Approximation

Instead of storing V/(s) or Q(s, a) for each state/state-action pair, we approximate using a
parameterized function:

V(s;w) ~ V™(s), Q(s,a;w)~ Q"(s,a)

where w are parameters (e.g., weights in neural network, linear function approximator)

@ Generalize from seen states to unseen states.

o Update parameters w using MC or TD learning.
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Function Approximation

Types of Value Function Approximation

(s, w) q(s,a,w) d(s,a;,w) - Q(s,a,,w)

_ _ T
/\/\/\W/\/\/\
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Function Approximation

Which Function Approximator?

We can approximate value functions using many different function approximators:
Linear Combinations of Features

Neural Network
Decision Tree

Nearest Neighbors
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Function Approximation

Which Function Approximator to choose?

We need to choose a function approximator based on:

State space: Discrete vs continuous, low vs high dimensional
Differentiable: Need gradients for gradient descent?
Interpretability: Do we need to understand the function?

Convergence: Does it converge to optimal solution?
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Function Approximation

State-Action Value Function Approximation for Policy Evaluation with an

Oracle

@ First assume we could query any state s and action a and an oracle would return the true
value for Q7 (s, a)

e Similar to supervised learning: assume given ((s, a), Q™ (s, a)) pairs

@ The objective is to find tAhe best approximate representation of Q™ given a particular
parameterized function Q(s, a;w)

January 28, 2026

Function Approximation & DQN
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Function Approximation

Gradient Descent

o Let J(w) be a differentiable function of parameter vector w

o Define the gradient of J(w) to be

0J(w) %
8w1 ,;'/.

Vwd(w) = ;
0J(w)
Oowp

e To find a local minimum of J(w)

@ Adjust w in direction of -ve gradient

1
Aw = —EaVWJ(w)

where « is a step-size parameter
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Function Approximation

Value Function approximation by Stochastic Gradient Descent

@ Goal: Find the parameter vector w that minimizes the loss between a true value function
Q™ (s, a) and its approximation Q(s, a; w).
@ Generally use mean squared error and define the loss as

J(w) = E-[(Q"(s,3) — Q(s, 2 w))’]
@ Can use gradient descent to find a local minimum
Aw = —%(XVWJ(W)

@ Stochastic gradient descent (SGD) uses a finite number of (often one) samples to
compute an approximate gradient:
V(W) = Vo E-[Q™(s,a) — Q(s, a;w)]?
= —2E.[(Q™(s,a) — Q(s, a;w))VwQ(s, a, w)]
@ Expected SGD is the same as the full gradient update
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Function Approximation

Feature Vectors

o Represent state by a feature vector

@ For example:
o Distance of robot from landmarks
o Trends in the stock market
o Piece and pawn configurations in chess
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Function Approximation

Linear Value Function Approximation

@ Represent value function by a linear combination of features
n
0(S,w) =x(S) w =) x;(S)w;
j=1

@ Objective function is quadratic in parameters w
J(w) = Ex[(va(S) — x(S)"w)?]

@ Stochastic gradient descent converges on global optimum
o Update rule is particularly simple

Vuw?(S,w) =x(S)
Aw = a(v(S) — 7(S,w))x(S)

Update = step-size X prediction error x feature value
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Table Lookup Features

@ Table lookup is a special case of linear value function approximation

o Using table lookup features

1(5 = 51)
xtable(s) — .

@ Parameter vector w gives value of each individual state
1(S=s1) wi
1(S=s,) w,
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Model Free VFA Policy Evaluation

e No oracle to tell true Q7 (s, a) for any state s and action a

@ Recall model-free policy evaluation (Lecture 3)

e Following a fixed policy 7 (or had access to prior data)
o Goal is to estimate V™ and/or QT

e Maintained a lookup table to store estimates V7 and/or Q™

o Updated these estimates after each episode (Monte Carlo methods) or after each step
(TD methods)

@ Now: in value function approximation, change the estimate update step to
include fitting the function approximator
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Function Approximation

Monte Carlo Value Function Approximation

@ Return G; is an unbiased but noisy sample of the true expected return Q™ (s¢, a¢)

@ Therefore can reduce MC VFA to doing supervised learning on a set of (state, action,
return) pairs:

<(51, al), G1>, <(52, az), G2>, ceey ((ST, aT), GT>

o Substitute G; for the true Q7 (s;, a;) when fit function approximator
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Function Approximation

MC Value Function Approximation for Policy Evaluation

1: Initialize w, k=1
2: loop
3:  Sample k-th episode (sk 1, ak,1, k,15 Sk,2; - - -  Sk,L,,) given T
4. fort=1,...,L, do
5: if First visit to (s, a) in episode k then
L
6: Ge(s,a) = jit Ik
7: Vwl(w) = —2[G(s, a)— Q(s¢, ar; w)]Vw Q(st, ar; w) (Compute
Gradient)
8: Update weights Aw
9: end if
10:  end for
11: k=k+1
12: end loop
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Function Approximation

Recall: Temporal Difference Learning w/ Lookup Table

@ Uses bootstrapping and sampling to approximate V™
e Updates V7(s) after each transition (s, a, r,s’):
V™(s) = V7(s) + a(r + yV7(s') — V™(s))
o Target is r +~yV7™(s'), a biased estimate of the true value V7(s)
@ Represent value for each state with a separate table entry
@ Note: Unlike MC we will focus on V instead of Q for policy evaluation here, because

there are more ways to create TD targets from Q values than V values
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Function Approximation

Temporal Difference TD(0) Learning with Value Function Approximation

Uses bootstrapping and sampling to approximate true V™

Updates estimate V™ (s) after each transition (s, a, r,s'):

V™(s) = V(s) + a(r +yV7(s') — V™(s))

Target is r +yV™(s’), a biased estimate of the true value V™ (s)

In value function approximation, target is r + vV 7(s’; w), a biased and approximated
estimate of the true value V7(s)

@ 3 forms of approximation:

@ Sampling
@ Bootstrapping
© Value function approximation

Dr. Amey Pore (Winter 2026) Function Approximation & DQN January 28, 2026



Function Approximation

Temporal Difference TD(0) Learning with Value Function Approximation

@ In value function approximation, target is r + fy\A/’T(s/;w), a biased and approximated
estimate of the true value V7(s)

@ Can reduce doing TD(0) learning with value function approximation to supervised
learning on a set of data pairs:

o (s1,n + 7\7”(52;w)), (s2, 2+ 7\7”(53; w)), ...
o Find weights to minimize mean squared error

J(w) = Ex[(rj + V7 (s41:w) — V(55 w))?]

@ Use stochastic gradient descent, as in MC methods
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TD(0) Value Function Approximation for Policy Evaluation

1: Initialize w, s
2: loop
3:  Given s sample a ~ 7(s), r(s, a),s’ ~ p(s's, a)

4. Ved(w)==2[r+~V(s;w) — V(s;w)]VW V(s; w)
5.  Update weights Aw

6: if s’ is not a terminal state then

7: Set s = ¢’

8: else

9: Restart episode, sample initial state s

10: end if

11: end loop
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Function Approximation

Convergence of Prediction Algorithms

On/Off-Policy ~Algorithm Table Lookup Linear Non-Linear

. MC v v v
On-Policy TD(0) v v X
. MC v v v
Off-Policy TD(0) Y X X
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Today's Outline

o Recall
@ Model Free Value Function Approximation
e Policy Evaluation
e Monte Carlo Policy Evaluation
o Temporal Difference (TD) Policy Evaluation
o Course Logistics
@ Control using Value Function Approximation

o Control using General Value Function Approximation
o SARSA with Function Approximation
o Deep Q-Learning
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Course Logistics

Course Logistics

@ Tomorrow's Mid-term will be held in DH2080: 90 mins.
@ Assignment 1 is out. Due Feb 13th

@ Project topics are updated.
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Course Logistics

Groups

@ Groups are created on Quercus. You can self-assign.

@ If you have already formed groups, you can strategically choose the papers to review for
Al.

@ Project topics are updated.
@ Groups are created on Quercus. You can self-assign.

o If you have already formed groups, you can strategically choose the papers to review for
Al.
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Break
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Today's Outline

o Recall
@ Model Free Value Function Approximation
e Policy Evaluation
e Monte Carlo Policy Evaluation
o Temporal Difference (TD) Policy Evaluation
@ Course Logistics
o Control using Value Function Approximation

o Control using General Value Function Approximation
o SARSA with Function Approximation
o Deep Q-Learning
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Control with Value Function Approximation

Q= 4=

@ Policy evaluation Approximate policy evaluation, @”(s, aw)~ Q"

@ Policy improvement e-greedy policy improvement
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Action-Value Function Approximation with an Oracle

o Q7(s,aw) ~ Q™
@ Minimize the mean-squared error between the true action-value function Q7 (s, a) and the
approximate action-value function:

J(w) = E[(Q7(s,a) — Q" (s, a;w))?]
@ Use stochastic gradient descent to find a local minimum
VwJ(w) = —2E [(Q"(s,a) — Q7 (s, a;w)) VW Q™ (s, a; w)]

@ Stochastic gradient descent (SGD) samples the gradient
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Incremental Model-Free Control Approaches

Similar to policy evaluation, true state-action value function for a state is unknown and so
substitute a target value for true Q(st, ar)

Aw = o Q(st, a) — Q(st, ar; W)V Q(st, ar; w)
In Monte Carlo methods, use a return G; as a substitute target
Aw = oGt — O(St, at; W))Vwé(st’ a;w)

SARSA: Use TD target r + vQ(s', a’; w) which leverages the current function
approximation value

Aw = afr +yQ(s',a";w) — Q(s, a;w))Vw Q(s, a; w)

Q-learning: Uses related TD target r + v maxy Q(s’, a’; w)
Aw = afr + ymax Q(s',a";w) — Q(s, a;w))Vw Q(s, a; w)
a/
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"Deadly Triad” which Can Cause Instability

o Informally, updates involve doing an (approximate) Bellman backup followed by best
trying to fit underlying value function to a particular feature representation
@ Bellman operators are contractions, but value function approximation fitting can be an
expansion
e To learn more, see Baird example in Sutton and Barto 2018
@ "Deadly Triad” can lead to oscillations or lack of convergence
o Bootstrapping
e Function Approximation
o Off policy learning (e.g. Q-learning)
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Example: Mountain Car

Mountain Car Problem

MOUNTAIN CAR Goal
@ Car stuck in valley between two hills
@ Goal: Reach the top of the right hill 7
@ State: Position and velocity g
@ Actions: Accelerate left, coast, accelerate right /
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Outline

Linear SARSA in Mountain Car

MouUNTAIN CAR Goal

Episode 104 ; /' |Episode 1 000,
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Linear Sarsa with Radial Basis Functions in Mountain Car

https://github.com/Ameyapores/MountainCar-SARSA
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https://github.com/Ameyapores/MountainCar-SARSA

Convergence of Control Algorithms

Algorithm Table Lookup Linear Non-Linear
Monte-Carlo Control v (v) X
Sarsa v (v) X
Q-learning v X X

(v') = chatters around near-optimal value function
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Deep Q-Network (DQN)

Using these ideas to do Deep RL in Atari

observation A
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Deep Q-Network (DQN)

Q-Learning with Neural Networks

@ Q-learning converges to optimal Q*(s, a) using tabular representation
@ In value function approximation Q-learning minimizes MSE loss by stochastic gradient
descent using a target @ estimate instead of true @
o But Q-learning with VFA can diverge
@ Two of the issues causing problems:
o Correlations between samples
o Non-stationary targets
o Deep Q-learning (DQN) addresses these challenges by using

o Experience replay
o Fixed Q-targets
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Deep Q-Network (DQN)

DQNs: Experience Replay

@ To help remove correlations, store dataset (called a replay buffer) D from prior

experience

S1,4d1,P,52

S2,4d2,13,53

st7 at7 rt-i-la st+1

-  s,a,r,s

@ To perform experience replay, repeat the following:
o (s,a,r,s’) ~ D: sample an experience tuple from the dataset

N

o Compute the target value for the sampled s: r + v maxy Q(s', a’; w)
o Use stochastic gradient descent to update the network weights

Aw = a(r 4y max Qs w) — Q(s, 3, w)) VW Q(s, a; w)

o Uses target as a scalar, but function weights will get updated on the next round,

changing the target value
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DQNs: Fixed Q-Targets

@ To help improve stability, fix the target weights used in the target calculation for
multiple updates

@ Target network uses a different set of weights than the weights being updated

o Let parameters w™ be the set of weights used in the target, and w be the weights that
are being updated

@ Slight change to computation of target value:

o (s,a,r,s’) ~ D: sample an experience tuple from the dataset

o Compute the target value for the sampled s: r + vy maxy Q(s’,a’;w™)
o Use stochastic gradient descent to update the network weights

Aw = a(r + v max Q(s',a;w™) — Q(s, a;w)) Vi Q(s, a; w)
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DQN Pseudocode

1: Input: E,q,s,a,r,s’ ~ m; Initialize D = (0, w =0
2: Set other state wg

3: for episode = 1,..., E do do
4 Initialize s;

2 fort=1,..., T dodo Note: There are several
7

8

Observe reward r; and next state St+1 hyperparameters and algorithm choices.

Store transition (st, at, rt, St+1) in replay buffer D One needs to choose the neural network
for | = 17 . K do do architecture, the learning rate, how
.. .. , often to update the target network.
9: Sample random minibatch of transitions (s, a, r,s’) from D Often a minibatch buffer is used, not
10: if St41 is terminal at step t + 1 then then just for experience replay, but also to do
11: Set yi=r batch updates of network weights. This
: t— 1t is because a key benefit of neural
12: else network architectures is a parameter is
13: Set y+ = rt + ymax, Q(5t+17 a’; Wi) updated the cost of passing a )
14: dif mini-batch through the network is about
) endi i N the same as for one sample.
15: Perform gradient descent step on (y: — Q(st, ar; w))? w.r.t. w
16: end for
17: Every C steps: w~ =w
18: end for
19: end for
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Check Your Understanding L4N3: Fixed Targets

e In DQN we compute the target value for the sampled (s, a, r,s’) using a separate set of
target weights: r +~ maxy Q(s',a’;w™)
o Select all that are true
o This doubles the computation time compared to a method that does not have a separate set
of weights

e This doubles the memory requirements compared to a method that does not have a separate
set of weights
o Not sure
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DQNs Summary

DQN uses experience replay and fixed Q-targets

Store transition (s, at, re41, St+1) in replay memory D
Sample random mini-batch of transitions (s, a, r,s’) from D
Compute Q-learning targets w.r.t. old, fixed parameters w™
Optimizes MSE between Q-network and Q-learning targets

Uses stochastic gradient descent
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DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s
Input state s is stack of raw pixels from last 4 frames
Output is Q(s, a) for 18 joystick/button positions
Reward is change in score for that step

Used a deep neural network with CNN

Network architecture and hyperparameters fixed across all games
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Deep Q-Network (DQN)

DQN
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Figure: Human-level control through deep reinforcement learning. Mnih et al, 2015
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Deep Q-Network (DQN)

DQN Results in Atari
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Figure: Human-level control through deep reinforcement learning. Mnih et al, 2015
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Deep Q-Network (DQN)

Which Aspects of DQN were Important for Success?

Game Linear Deep Network
Breakout 3 3
Enduro 62 29
River Raid 2345 1453
Seaquest 656 275
Space Invaders 301 302

Note: just using a deep NN actually hurt performance sometimes!
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Deep Q-Network (DQN)

Which Aspects of DQN were Important for Success?

Game Linear Deep Network DQN w/ fixed Q
Breakout 3 3 10
Enduro 62 29 141

River Raid 2345 1453 2868
Seaquest 656 275 1003
Space Invaders 301 302 373
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Deep Q-Network (DQN)

Which Aspects of DQN were Important for Success?

. Deep DQN w DQN w DQN w/replay
Game Linear Network | fixed Q/ replay/ and fix/ed Q
Breakout 3 3 10 241 317
Enduro 62 29 141 831 1006
River Raid 2345 1453 2868 4102 7447
Seaquest 656 275 1003 823 2894
Space Invaders 301 302 373 826 1089

@ Replay is hugely important

@ Why? Beyond helping with correlation between samples, what does replaying do?
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Deep RL

@ Success in Atari has led to huge excitement in using deep neural networks to do value
function approximation in RL
@ Some immediate improvements (many others!)
o Double DQN (Deep Reinforcement Learning with Double Q-Learning, Hasselt et al, AAAI
2016)
o Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)

o Dueling DQN (best paper ICML 2016) (Dueling Network Architectures for Deep
Reinforcement Learning, Wang et al)
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What You Should Understand (for mid-term)

e 6 6 o o

Be able to implement Policy lteration and Value lteration.

Be able to implement TD(0) and MC on policy evaluation

Be able to implement Q-learning and SARSA and MC control algorithms
Know about MDP structure

Key features in DQN and function approximation that are critical.
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Thank Youl

Questions?
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