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L5N1 Refresh Your Knowledge. Comparing Policy Performance

Consider doing experience replay over a finite, but extremely large, set of (s,a,r,s’) tuples).
Q-learning is initialized to 0 everywhere and all rewards are positive. Select all that are true

1 Assume all tuples were gathered from a fixed, deterministic policy π. Then in the tabular
setting, if each tuple is sampled at random and used to do a Q-learning update, and this
is repeated an infinite number of times, then there exists a learning rate schedule so that
the resulting estimate will converge to the true Qπ.

2 In situation (1) (the first option above) the resulting Q estimate will be identical to if one
computed an estimated dynamics model and reward model using maximum likelihood
evaluation from the tuples, and performed policy evaluation using the estimated dynamics
and reward models.

3 If one uses DQN to populate the experience replay set of tuples, then doing experience
replay with DQN is always guaranteed to converge to the optimal Q function.
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Class Structure

Last time: Learning to Control using value function parametrization

This time: Direct Policy parameterization

Next time: Advanced Policy parametrization
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Outline

Introduction

Policy Gradient (PG)

Finite-difference PG
Monte-Carlo PG
TD PG

Course logistics

Actor-Critic PG

Baseline (Advantage estimation)
TD Advantage
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Introduction

Policy-Based Reinforcement Learning

In the last lecture we approximated the value or action-value function using parameters w ,

Vw (s) ≈ V π(s)

Qw (s, a) ≈ Qπ(s, a)

A policy was generated directly from the value function

e.g. using ϵ-greedy

In this lecture we will directly parametrize the policy, and will typically use θ to show
parameterization:

πθ(s, a) = P[a|s; θ]

Goal is to find a policy π with the highest value function V π

We will focus again on model-free reinforcement learning
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Introduction

Value-Based and Policy-Based RL

Value Based
Learn Value Function
Implicit policy (e.g. ϵ-greedy)

Policy Based
No Value Function
Learned Policy

Actor-Critic
Learned Value Function
Learned Policy
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Introduction

Advantages of Policy-Based RL

Advantages:

Better convergence properties

Effective in high-dimensional or continuous action spaces

Can learn stochastic policies

Disadvantages:

Typically converge to a local rather than global optimum

Evaluating a policy is typically inefficient and high variance

End-to-End Training of Deep Visuomotor Policies: https://www.youtube.com/watch?v=Q4bMcUk6pcw
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Introduction

Types of Policies to Search Over

So far have focused on deterministic policies or ϵ-greedy policies

Now we are thinking about direct policy search in RL, will focus heavily on stochastic
policies
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Introduction

Example: Rock-Paper-Scissors

Two-player game of rock-paper-scissors

Scissors beats paper
Rock beats scissors
Paper beats rock

Let state be history of prior actions (rock, paper
and scissors) and if won or lost

Is deterministic policy optimal? Why or why not?
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Introduction

Example: Rock-Paper-Scissors, Vote

Two-player game of rock-paper-scissors

Scissors beats paper
Rock beats scissors
Paper beats rock

Let state be history of prior actions (rock, paper
and scissors) and if won or lost

Is deterministic policy optimal? Why or why not?

A deterministic policy is easily exploited
A uniform random policy is optimal (i.e. Nash
equilibrium)
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Introduction

Example: Aliased Gridworld (1)

The agent cannot differentiate the grey states

Consider features of the following form (for all N,
E, S, W)

ϕ(s, a) = 1(wall to N, a = move E)

Compare value-based RL, using an approximate
value function

Qθ(s, a) = f (ϕ(s, a); θ)

To policy-based RL, using a parametrized policy

πθ(s, a) = g(ϕ(s, a); θ)
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Introduction

Example: Aliased Gridworld (2)

Under aliasing, an optimal deterministic policy will
either

move W in both grey states (shown by red arrows)
move E in both grey states

Either way, it can get stuck and never reach the
money

Value-based RL learns a near-deterministic policy

e.g. greedy or ϵ-greedy

So it will traverse the corridor for a long time
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Introduction

Example: Aliased Gridworld (3)

An optimal stochastic policy will randomly move E
or W in grey states

πθ(wall to N and S, move E) = 0.5

πθ(wall to N and S, move W) = 0.5

It will reach the goal state in a few steps with high
probability

Policy-based RL can learn the optimal stochastic
policy
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Introduction

Policy Objective Functions

Goal: given a policy πθ(s, a) with parameters θ, find best θ

But how do we measure the quality for a policy πθ?

In episodic environments can use policy value at start state V (s0, θ)

For simplicity, today will mostly discuss the episodic case, but can easily extend to the
continuing / infinite horizon case
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Introduction

Policy optimization

Policy based reinforcement learning is an optimization problem

Find policy parameters θ that maximize V (s0, θ)
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Introduction

Policy optimization

Policy based reinforcement learning is an optimization problem

Find policy parameters θ that maximize V (s0, θ)

Can use gradient free optimization

Hill climbing
Simplex / amoeba / Nelder Mead
Genetic algorithms
Cross-Entropy method (CEM)
Covariance Matrix Adaptation (CMA)
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Policy Gradient

Gradient Free Policy Optimization

Can often work embarrassingly well: “discovered that evolution strategies (ES), an
optimization technique that’s been known for decades, rivals the performance of standard
reinforcement learning (RL) techniques on modern RL benchmarks (e.g. Atari/MuJoCo)”
(https://blog.openai.com/evolution-strategies/)
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Policy Gradient

Gradient Free Policy Optimization: Genetic Algorithms

Often a great simple baseline to try

Benefits

Can work with any policy parameterizations, including non-differentiable
Frequently very easy to parallelize

Limitations

Often less sample efficient because it ignores temporal structure
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Policy Gradient

Policy optimization

Policy based reinforcement learning is an optimization problem

Find policy parameters θ that maximize V (s0, θ)

Can use gradient free optimization:

Greater efficiency often possible using gradient

Gradient descent
Conjugate gradient
Quasi-newton

We focus on gradient descent, many extensions possible

And on methods that exploit sequential structure
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Policy Gradient

Outline

Introduction

Policy Gradient (PG)
Finite-difference PG
Monte-Carlo PG
TD PG

Course logistics

Actor-Critic PG

Baseline (Advantage estimation)
TD Advantage
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Policy Gradient

Policy Gradient

Define V πθ = V (s0, θ) to make explicit the dependence of the value on the policy
parameters [but don’t confuse with value function approximation, where parameterized
value function]

Assume episodic MDPs (easy to extend to related objectives, like average reward)
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Policy Gradient

Policy Gradient
Define V πθ = V (s0, θ) to make explicit the dependence of
the value on the policy parameters

Assume episodic MDPs

Policy gradient algorithms search for a local maximum in
V (s0, θ) by ascending the gradient of the policy, w.r.t
parameters θ

∆θ = α∇θV (s0, θ)

Where ∇θV (s0, θ) is the policy gradient

∇θV (s0, θ) =


∂V (s0,θ)

∂θ1
...

∂V (s0,θ)
∂θn


and α is a step-size parameter
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Policy Gradient

Computing Gradients By Finite Differences

To evaluate policy gradient of πθ(s, a)

For each dimension k ∈ [1, n]

Estimate kth partial derivative of objective function w.r.t. θ
By perturbing θ by small amount ϵ in kth dimension

∂V (s0, θ)

∂θk
≈ V (s0, θ + ϵuk)− V (s0, θ)

ϵ

where uk is unit vector with 1 in kth component, 0 elsewhere

Uses n evaluations to compute policy gradient in n dimensions

Simple, noisy, inefficient - but sometimes effective

Works for arbitrary policies, even if policy is not differentiable
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Policy Gradient

Training AIBO to Walk by Finite Difference Policy Gradient

Figure: Early example of policy gradient methods: training a AIBO to have a faster walk. Paper: Kohl and
Stone, ICRA 2004

Goal: learn a fast AIBO walk (useful for Robocup)

AIBO walk policy is controlled by 12 numbers (elliptical loci)

Adapt these parameters by finite difference policy gradient

Evaluate performance of policy by field traversal time
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Policy Gradient

Value of a Parameterized Policy

Now assume policy πθ is differentiable whenever it is non-zero and we know the gradient
∇θπθ(s, a)

Recall policy value is V (s0, θ) = Eπθ

[∑T
t=0 R(st , at);πθ, s0

]
where the expectation is

taken over the states & actions visited by πθ
We can re-express this in multiple ways

V (s0, θ) =
∑

a πθ(a|s0)Q(s0, a, θ)

Dr. Amey Pore (Winter 2026) Policy Gradient February 04, 2026 25 / 71



Policy Gradient

Value of a Parameterized Policy

Assume policy πθ is differentiable whenever it is non-zero and we can compute the
gradient ∇θπθ(s, a)

Recall policy value is V (s0, θ) = Eπθ

[∑T
t=0 R(st , at);πθ, s0

]
where the expectation is

taken over the states & actions visited by πθ
We can re-express this in multiple ways

V (s0, θ) =
∑

a πθ(a|s0)Q(s0, a, θ)
V (s0, θ) =

∑
τ P(τ ; θ)R(τ)

where τ = (s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT ) is a state-action trajectory,
P(τ ; θ) is used to denote the probability over trajectories when executing policy π(θ) starting
in state s0, and
R(τ) =

∑T
t=0 R(st , at) the sum of rewards for a trajectory τ
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Policy Gradient

Likelihood Ratio Policies

Denote a state-action trajectory as τ = (s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT )

Use R(τ) =
∑T

t=0 R(st , at) to be the sum of rewards for a trajectory τ

Policy value is

V (θ) = Eπθ

[
T∑
t=0

R(st , at);πθ

]
=
∑
τ

P(τ ; θ)R(τ)

where P(τ ; θ) is used to denote the probability over trajectories when executing policy
π(θ)

In this new notation, our goal is to find the policy parameters θ:

argmax
θ

V (θ) = argmax
θ

∑
τ

P(τ ; θ)R(τ)
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Policy Gradient

Likelihood Ratio Policy Gradient

Goal is to find the policy parameters θ:

argmax
θ

V (θ) = argmax
θ

∑
τ

P(τ ; θ)R(τ)

Take the gradient with respect to θ:

∇θV (θ) = ∇θ

∑
τ

P(τ ; θ)R(τ)
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Policy Gradient

Likelihood Ratio Policy Gradient

Goal is to find the policy parameters θ: argmaxθ V (θ) = argmaxθ
∑

τ P(τ ; θ)R(τ)

Take the gradient with respect to θ:

∇θV (θ) = ∇θ

∑
τ

P(τ ; θ)R(τ) =
∑
τ

∇θP(τ ; θ)R(τ)

=
∑
τ

P(τ ; θ)

P(τ ; θ)
∇θP(τ ; θ)R(τ) =

∑
τ

P(τ ; θ)R(τ)
∇θP(τ ; θ)

P(τ ; θ)︸ ︷︷ ︸
likelihood ratio

=
∑
τ

P(τ ; θ)R(τ)∇θ logP(τ ; θ)
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Policy Gradient

Likelihood Ratio Policy Gradient

Goal is to find the policy parameters θ:

argmax
θ

V (θ) = argmax
θ

∑
τ

P(τ ; θ)R(τ)

Take the gradient with respect to θ:

∇θV (θ) =
∑
τ

P(τ ; θ)R(τ)∇θ logP(τ ; θ)

Approximate using m sample trajectories under policy πθ:

∇θV (θ) ≈ ĝ = (1/m)
m∑
i=1

R(τ (i))∇θ logP(τ
(i); θ)
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Policy Gradient

Decomposing the Trajectories Into States and Actions

Approximate using m sample paths under policy πθ:

∇θV (θ) ≈ ĝ = (1/m)
m∑
i=1

R(τ (i))∇θ logP(τ
(i))

∇θ logP(τ
(i); θ) =
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Policy Gradient

Decomposing the Trajectories Into States and Actions

Approximate using m sample paths under policy πθ:

∇θV (θ) ≈ ĝ = (1/m)
m∑
i=1

R(τ (i))∇θ logP(τ
(i))

∇θ logP(τ
(i); θ) = ∇θ log

 µ(s0)︸ ︷︷ ︸
Initial state distrib.

T−1∏
t=0

πθ(at |st)︸ ︷︷ ︸
policy

P(st+1|st , at)︸ ︷︷ ︸
dynamics model


= ∇θ

[
log µ(s0) +

T−1∑
t=0

log πθ(at |st) + logP(st+1|st , at)

]

=
T−1∑
t=0

∇θ log πθ(at |st)︸ ︷︷ ︸
no dynamics model required!
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Policy Gradient

Decomposing the Trajectories Into States and Actions

Approximate using m sample paths under policy πθ:

∇θV (θ) ≈ ĝ = (1/m)
m∑
i=1

R(τ (i))∇θ logP(τ
(i))

∇θ logP(τ
(i); θ) = ∇θ log

 µ(s0)︸ ︷︷ ︸
Initial state distrib.

T−1∏
t=0

πθ(at |st)︸ ︷︷ ︸
policy

P(st+1|st , at)︸ ︷︷ ︸
dynamics model


= ∇θ

[
log µ(s0) +

T−1∑
t=0

log πθ(at |st) + logP(st+1|st , at)

]

=
T−1∑
t=0

∇θ log πθ(at |st)︸ ︷︷ ︸
score function
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Policy Gradient

Score Function

A score function is the derivative of the log of a parameterized probability / likelihood

Example: let π(s; θ) be the probability of state s under parameter θ

Then the score function would be

∇θ log π(s; θ) (1)

For many policy classes, it is not hard to compute the score function
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Policy Gradient

Policies
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Policy Gradient

Softmax Policy

Weight actions using linear combination of features ϕ(s, a)T θ

Probability of action is proportional to exponentiated weight

πθ(s, a) = eϕ(s,a)
T θ/

(∑
a

eϕ(s,a)
T θ

)

The score function is ∇θ log πθ(s, a) =
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Policy Gradient

Softmax Policy

Weight actions using linear combination of features ϕ(s, a)T θ

Probability of action is proportional to exponentiated weight:

πθ(s, a) = eϕ(s,a)
T θ/

(∑
a′ e

ϕ(s,a′)T θ
)

The score function is:

∇θ log πθ(s, a) = ∇θ log

[
eϕ(s,a)

T θ∑
a′ e

ϕ(s,a′)T θ

]
= ∇θ

[
ϕ(s, a)T θ − log

∑
a′

eϕ(s,a
′)T θ

]

= ϕ(s, a)−
∑

a′ ϕ(s, a
′)eϕ(s,a

′)T θ∑
a′ e

ϕ(s,a′)T θ
= ϕ(s, a)− Eπθ

[ϕ(s, ·)]
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Policy Gradient

Softmax Policy

Weight actions using linear combination of features ϕ(s, a)T θ

Probability of action is proportional to exponentiated weight

πθ(s, a) = eϕ(s,a)
T θ/

(∑
a

eϕ(s,a)
T θ

)

The score function is
∇θ log πθ(s, a) = ϕ(s, a)− Eπθ

[ϕ(s, ·)]
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Policy Gradient

Gaussian Policy

In continuous action spaces, a Gaussian policy is natural

Mean is a linear combination of state features µ(s) = ϕ(s)T θ

Variance may be fixed σ2, or can also parametrised

Policy is Gaussian a ∼ N (µ(s), σ2)

The score function is

∇θ log πθ(s, a) =
(a− µ(s))ϕ(s)

σ2

Deep neural networks (and other models where can compute the gradient) can also be
used to represent the policy
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Policy Gradient

Likelihood Ratio / Score Function Policy Gradient

Putting this together

Goal is to find the policy parameters θ:

argmax
θ

V (θ) = argmax
θ

∑
τ

P(τ ; θ)R(τ)

Approximate with empirical estimate for m sample paths under policy πθ using score
function:

∇θV (θ) ≈ ĝ = (1/m)
m∑
i=1

R(τ (i))∇θ logP(τ
(i); θ)

= (1/m)
m∑
i=1

R(τ (i))
T−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t )

Do not need to know dynamics model
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Policy Gradient

Think Pair-wise: Score functions

∇θV (θ) = (1/m)
m∑
i=1

R(τ (i))
T−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t )

The likelihood ratio / score function policy gradient (select one):

(a) requires reward functions that are differentiable

(b) can only be used with Markov decision processes

(c) Is useful mostly for infinite horizon tasks

(a) and (b)

a,b and c

None of the above

Not sure
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Policy Gradient

Score Function Gradient Estimator: Intuition

Consider generic form of R(τ (i))∇θ logP(τ
(i); θ):

ĝi = f (xi )∇θ log p(xi |θ)
f (x) measures how good the sample x is.

Moving in the direction ĝi pushes up the logprob of the sample, in proportion to how
good it is

Valid even if f (x) is discontinuous, and unknown, or sample space (containing x) is a
discrete set
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Policy Gradient

Score Function Gradient Estimator: Intuition

ĝi = f (xi )∇θ log p(xi |θ)
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Policy Gradient

Score Function Gradient Estimator: Intuition

ĝi = f (xi )∇θ log p(xi |θ)
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Policy Gradient

Score Function Gradient Estimator: Intuition

ĝi = f (xi )∇θ log p(xi |θ)
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Policy Gradient

Policy Gradient Theorem

The policy gradient theorem generalizes the likelihood ratio approach

Replaces reward over the trajectory R(τ (i)) with long-term value Qπθ(s, a)

Theorem

For any differentiable policy πθ(a|s), the policy gradient is

∇θV (s0, θ) = Eπθ
[∇θ log πθ(a|s)Qπθ(s, a)]
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Course Logistics

Outline

Introduction
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Course Logistics

Course Logistics

Time to form teams. We can accomodate at max 15 teams.

Grades for lab 1 are out on MarkUs.

Grades for lab 2 will be out this week.

A1 Recommendations.

Start implementing as early as possible, as you will encounter lots of errors.
Expectation is that while you read these papers, you understand the problem, and use it with
your team in project proposal.
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Course Logistics

Additional textbooks and resources

1) RL Theory

Algorithms for Reinforcement Learning
(Intermediate)

Reinforcement Learning: Foundations (Advanced)

Mathematical Foundations of Reinforcement
Learning

2) Deep RL

Grokking Deep Reinforcement Learning

Deep Reinforcement Learning Hands-On

Foundations of Deep Reinforcement Learning:
Theory and Practice in Python
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Course Logistics

Break

Break - 5 minutes
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Course Logistics

Policy Gradient Theorem

The policy gradient theorem generalizes the likelihood ratio approach

Replaces reward over the trajectory R(τ (i)) with long-term value Qπθ(s, a)

Theorem

For any differentiable policy πθ(a|s), the policy gradient is

∇θV (s0, θ) = Eπθ
[∇θ log πθ(a|s)Qπθ(s, a)]
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Course Logistics

Monte-Carlo Policy Gradient (REINFORCE)

Using policy gradient theorem

Using return Gt as an unbiased estimate of Qπθ(st , at)

Stochastic gradient ascent update:

∆θt = α∇θ log πθ(st , at)Gt

1: Initialize policy parameters θ arbitrarily
2: for each episode {s1, a1, r2, · · · , sT−1, aT−1, rT} ∼ πθ do
3: for t = 1 to T − 1 do
4: θ ← θ + α∇θ log πθ(st |at)Gt

5: end for
6: end for
7: return θ
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Course Logistics

Puck World Example

Continuous actions exert small force on puck

Puck is rewarded for getting close to target

Target location is reset every 30 seconds

Policy is trained using variant of Monte-Carlo policy gradient
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Course Logistics

Outline

Introduction

Policy Gradient (PG)

Finite-difference PG
Monte-Carlo PG
TD PG

Course logistics

Actor-Critic PG
Baseline (Advantage estimation)
TD Advantage
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Course Logistics

Reducing Variance Using a Critic

Monte-Carlo policy gradient still has high variance

We use a critic to estimate the action-value function,

Qw (s, a) ≈ Qπθ(s, a)

Actor-critic algorithms maintain two sets of parameters

Critic Updates action-value function parameters w
Actor Updates policy parameters θ, in direction suggested by critic

Actor-critic algorithms follow an approximate policy gradient

∇θV (s0, θ) ≈ Eπθ
[∇θ log πθ(a|s)Qw (s, a)]

∆θ = α∇θ log πθ(a|s)Qw (s, a)
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Course Logistics

Estimating the Action-Value Function

The critic is solving a familiar problem: policy evaluation

How good is policy πθ for current parameters θ?

This problem was explored in previous two lectures, e.g.

Monte-Carlo policy evaluation
Temporal-Difference learning

Could also use e.g. least-squares policy evaluation
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Course Logistics

Action-Value Actor-Critic

Simple actor-critic algorithm based on action-value critic
Using linear value fn approx. Qw (s, a) = ϕ(s, a)⊤w

Critic Updates w by linear TD(0)
Actor Updates θ by policy gradient

1: function Q-Actor Critic
2: Initialize s, θ
3: Sample action a ∼ πθ(·|s)
4: for each step do
5: Sample reward r = R(s, a); sample transition s ′ ∼ P(·|s, a)
6: Sample action a′ ∼ πθ(·|s ′)
7: δ ← r + γQw (s

′, a′)− Qw (s, a)
8: θ ← θ + α∇θ log πθ(a|s)Qw (s, a)
9: w ← w + βδϕ(s, a)

10: a← a′, s ← s ′

11: end for
12: end function
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Course Logistics

Bias in Actor-Critic Algorithms

Approximating the policy gradient introduces bias

A biased policy gradient may not find the right solution

e.g. if Qw (s, a) uses aliased features, can we solve gridworld example?

Luckily, if we choose value function approximation carefully

Then we can avoid introducing any bias

i.e. We can still follow the exact policy gradient
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Actor-critic PG

Reducing Variance Using a Baseline

Reduce variance by introducing a baseline b(s)

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at |st ; θ)

(
T−1∑
t′=t

rt′ − b(st)

)]

For any choice of b, gradient estimator is unbiased.

Near optimal choice is the expected return,

b(st) ≈ E [rt + rt+1 + · · ·+ rT−1]

Interpretation: increase logprob of action at proportionally to how much returns
∑T−1

t′=t rt′

are better than expected
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Actor-critic PG

Baseline b(s) Does Not Introduce Bias–Derivation

Eτ [∇θ log π(at |st ; θ)b(st)]

= Es0:t ,a0:(t−1)

[
Es(t+1):T ,at:(T−1)

[∇θ log π(at |st ; θ)b(st)]
]

(break up expectation)

= Es0:t ,a0:(t−1)
[b(st)Eat [∇θ log π(at |st ; θ)]] (pull out baseline)

= Es0:t ,a0:(t−1)

[
b(st)

∑
a

πθ(at |st)
∇θπ(at |st ; θ)
πθ(at |st)

]
(likelihood ratio)

= Es0:t ,a0:(t−1)

[
b(st)

∑
a

∇θπ(at |st ; θ)

]
= Es0:t ,a0:(t−1)

[b(st)∇θ1]

= Es0:t ,a0:(t−1)
[b(st) · 0] = 0
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Actor-critic PG

“Vanilla” Policy Gradient Algorithm

1: Initialize policy parameter θ, baseline b
2: for iteration = 1, 2, · · · do
3: Collect a set of trajectories by executing the current policy
4: At each timestep t in each trajectory τ i , compute:
5: Return G i

t =
∑T−1

t′=t r
i
t′

6: Advantage estimate Âi
t = G i

t − b(st)
7: Re-fit the baseline, by minimizing

∑
i

∑
t ∥b(st)− G i

t∥2
8: Update the policy, using a policy gradient estimate ĝ :
9: ĝ =

∑
i

∑
t ∇θ log π(at |st , θ)Âi

t

10: (Plug ĝ into SGD or ADAM)
11: end for

Other choices for Baseline?
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Actor-critic PG

Choosing the Baseline: Value Functions

Recall Q-function / state-action-value function:

Qπ(s, a) = Eπ

[
r0 + γr1 + γ2r2 · · · |s0 = s, a0 = a

]
State-value function can serve as a great baseline

V π(s) = Eπ

[
r0 + γr1 + γ2r2 · · · |s0 = s

]
= Ea∼π[Q

π(s, a)]
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Actor-critic PG

Policy Gradient Formulas with Value Functions

Recall:

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at |st ; θ)

(
T−1∑
t′=t

rt′ − b(st)

)]

∇θEτ [R] ≈ Eτ

[
T−1∑
t=0

∇θ log π(at |st ; θ)(Q(st , at ;w)− b(st))

]
Letting the baseline be an estimate of the value V , we can represent the gradient in terms
of the state-action advantage function

∇θEτ [R] ≈ Eτ

[
T−1∑
t=0

∇θ log π(at |st ; θ)Âπ(st , at)

]

where the advantage function Aπ(s, a) = Qπ(s, a)− V π(s)
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Actor-critic PG

Choosing the Target

G i
t is an estimation of the value function at st from a single roll out

Unbiased but high variance

Reduce variance by introducing bias using bootstrapping and function approximation

Just like we saw for TD vs MC, and value function approximation
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Actor-critic PG

Actor-Critic Methods

Estimate of V /Q is done by a critic

Actor-critic methods maintain an explicit representation of policy and the value function,
and update both

A3C (Mnih et al. ICML 2016) is a very popular actor-critic method
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Actor-critic PG

Estimating the Advantage Function (1)

The advantage function can significantly reduce variance of policy gradient

So the critic should really estimate the advantage function

For example, by estimating both V πθ(s) and Qπθ(s, a)

Using two function approximators and two parameter vectors,

Vv (s) ≈ V πθ(s)

Qw (s, a) ≈ Qπθ(s, a)

A(s, a) = Qw (s, a)− Vv (s)

And updating both value functions by e.g. TD learning
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Actor-critic PG

Estimating the Advantage Function (2)

For the true value function V πθ(s), the TD error δπθ

δπθ = r + γV πθ(s ′)− V πθ(s)

is an unbiased estimate of the advantage function

Eπθ
[δπθ |s, a] = Eπθ

[r + γV πθ(s ′)|s, a]− V πθ(s)

= Qπθ(s, a)− V πθ(s)

= Aπθ(s, a)

So we can use the TD error to compute the policy gradient

∇θV (s0, θ) = Eπθ
[∇θ log πθ(a|s)δπθ ]

In practice we can use an approximate TD error

δv = r + γVv (s
′)− Vv (s)

This approach only requires one set of critic parameters v
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Actor-critic PG

Choosing the Target: N-step estimators

∇θV (θ) ≈ (1/m)
∑m

i=1

∑T−1
t=0 R i

t∇θ log πθ(a
(i)
t |s

(i)
t )

Critic can select any blend between TD and MC estimators:

R̂
(1)
t = rt + γV (st+1), R̂

(2)
t = rt + γrt+1 + γ2V (st+2), · · ·

R̂
(∞)
t = rt + γrt+1 + γ2rt+2 + · · ·

If subtract baselines from the above, get advantage estimators:

Â
(1)
t = rt + γV (st+1)− V (st)

Â
(∞)
t = rt + γrt+1 + γ2rt+2 + · · · − V (st)
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Actor-critic PG

Think Pair wise: Blended Advantage Estimators

∇θV (θ) ≈ (1/m)
m∑
i=1

T−1∑
t=0

R i
t∇θ log πθ(a

(i)
t |s

(i)
t )

If subtract baselines from the above, get advantage estimators

Â
(1)
t = rt + γV (st+1)− V (st)

Â
(∞)
t = rt + γrt+1 + γ2rt+2 + · · · − V (st)

Select all that are true

Â
(1)
t has low variance & low bias.

Â
(1)
t has high variance & low bias.

Â
(∞)
t low variance and high bias.

Â
(∞)
t high variance and low bias.

Not sure
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Actor-critic PG

Summary of Policy Gradient Algorithms

The policy gradient has many equivalent forms

∇θV (s0, θ) = Eπθ
[∇θ log πθ(a|s)Gt ] REINFORCE

= Eπθ
[∇θ log πθ(a|s)Qw (s, a)] Q Actor-Critic

= Eπθ
[∇θ log πθ(a|s)Aw (s, a)] Advantage Actor-Critic

= Eπθ
[∇θ log πθ(a|s)δ] TD Actor-Critic

Each leads a stochastic gradient ascent algorithm

Critic uses policy evaluation (e.g. MC or TD learning) to estimate Qπ(s, a), Aπ(s, a) or
V π(s)
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Actor-critic PG

Class Structure

Last time: Deep Model-free Value Based RL

This time: Policy Gradients

Next time: Policy Gradients Cont.
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