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Course Logistics

Course Logistics

o Project Teams:

o Still many unassigned teams on Quercus.
o Students not in a team will be assigned randomly soon.
o Team Building: put a note of the topic you want to work on the sticky note.
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Think pair wise

Which of the following are true about REINFORCE? In the following options, PG stands for
policy gradient.

@ Adding a baseline term can help to reduce the variance of the PG updates
@ It will converge to a global optima

@ It can be initialized with a sub-optimal, deterministic policy and still converge to a local
optima, given the appropriate step sizes

@ If we take one step of PG, it is possible that the resulting policy gets worse (in terms of
achieved returns) than our initial policy
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REINFORCE Algorithm

@ Using policy gradient theorem
@ Using return G; as an unbiased estimate of Q™ (s;, a;)

@ Stochastic gradient ascent update:

Aet = one IOg W@(St, at)Gt

1: Initialize policy parameters 6 arbitrarily

2: for each episode {s1,a1,r, - ,s7_1,a7—_1, T} ~ 7y do
3 fort=1t0o T —1do

4: 0 + 6+ aVylogmy(st|a:) Ge

5 end for

6: end for

7: return ¢

Very high variancel
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Action-Value Actor-Critic

@ Simple actor-critic algorithm based on action-value critic
o Using linear value fn approx. Q,(s,a) = ¢(s,a)'w

o Critic Updates w by linear TD(0)

o Actor Updates 6 by policy gradient

function Q-Actor Critic

Initialize s, 6

Sample action a ~ my(-|s)

for each step do
Sample reward r = R(s, a); sample transition s’ ~ P(:|s, a)
Sample action a’ ~ my(+|s’)
0+ r+vQu(s’,a) — Qu(s,a)
0« 0+ aVylogm(als)Quw(s, a)
w — w+ Big(s, a)
a<a,s« s

: end for

: end function

QNI H N

= e
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“Vanilla” Policy Gradient Algorithm

1: Initialize policy parameter 6, baseline b

2: for iteration =1,2,--- do

3: Collect a set of trajectories by executing the current policy

At each timestep t in each trajectory 7/, compute:
Return G/ = Y] 1+,
Advantage estimate AL = G/ — b(s;)

Re-fit the baseline, by minimizing Y, >, ||b(st) — G/|?

Update the policy, using a policyAgradient estimate g:
g&=7>2:Vologm(at|s:, 0)A;

10: (Plug & into SGD or ADAM)

11: end for

@ Other Baseline: A™(s,a) = QI (s,a) — Vi (s)

©oN> TR

Advantage Actor Critic
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Course Logistics

Asynchronous Advantage Actor-Critic (A3C)

o Beamider
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Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, Kavukcuoglu. Asynchronous Methods for Deep
Reinforcement Learning. ICML 2016.
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Advanced Policy Gradients
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Advanced Policy Gradients

Policy Gradients Review

Policy gradient algorithms try to solve the optimization problem

max J(mp) = Ermr, [Z’Y rt]

by taking stochastic gradient ascent on the policy parameters 6, using the policy gradient

o0
g = VoJ(mg) =Errr, [Z 7'V log mg(at|st) A™ (s, at)]
t=0
Limitations of policy gradients:
@ Sample efficiency is poor
o Distance in parameter space # distance in policy space!
o What is policy space? For tabular case, set of matrices
Mn= {77 e RISIXIAL YoaTsa =1, Tea > 0}
e Policy gradients take steps in parameter space
o Step size is hard to get right as a result
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Advanced Policy Gradients

Sample Efficiency in Policy Gradients

@ Sample efficiency for vanilla policy gradient methods is poor
@ Discard each batch of data immediately after just one gradient step

o Why? PG is an on-policy expectation.
Two main approaches to obtaining an unbiased estimate of the policy gradient
o Collect sample trajectories from policy, then form sample estimate. (More stable)

o Use trajectories from other policies (Less stable)

@ Opportunity: use old data to take multiple gradient steps before using the resulting
new policy to gather more data
@ Challenge: even if this is possible to use old data to estimate multiple gradients, how

many steps should be taken?

February 11, 2026
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Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:
Ok+1 = Ok + kB
with step Ay = agk.

o If the step is too large, performance collapse is possible (Why?)
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Advanced Policy Gradients

Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:
Ok+1 = Ok + kB

with step Ay = axgk.
o If the step is too large, performance collapse is possible (Why?)
o If the step is too small, progress is unacceptably slow
o “"Right” step size changes based on 6

@ Automatic learning rate adjustment like advantage normalization, or Adam-style
optimizers, can help. But does this solve the problem?
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Choosing a Step Size for Policy Gradients

T

k-1 k opt k+1

Figure: Policy parameters on x-axis and performance on y -axis. A bad step can lead to performance
collapse, which may be hard to recover from.
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Advanced Policy Gradients
The Problem is More Than Step Size

Consider a family of policies with parametrization:
a(0) a=1
1-0(0) a=2

theta = 4 theta = 2 theta =0

Big question: how do we come up with
an update rule that doesn't ever change
-. the policy more than we meant to?

Figure: Small changes in the policy parameters can
unexpectedly lead to big changes in the policy.

al a2 al a2

Dr. Amey Pore (Winter 2026) Advanced PG February 11, 2026



Advanced Policy Gradients

Outline

Q Recall

@ Problems with Policy Gradient Methods
© Policy Performance Bounds

@ Proximal Policy Optimization Algorithm
© Generalized Advantage Estimation

O Off-policy Actor Critic

@ Monotonic Improvement Theory
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Advanced Policy Gradients

Relative Performance of Two Policies

In a policy optimization algorithm, we want an update step that
@ uses rollouts collected from the most recent policy as efficiently as possible,
@ and takes steps that respect distance in policy space as opposed to distance in parameter
space.

To figure out the right update rule, we need to exploit relationships between the performance
of two policies.

Performance difference lemma: For any policies 7, 7’

J(W/) - J(W) =E;n Z'YtAW(Sh af)] (1)

t=0
1 T
= ﬁ ngd"’// [A (57 a)] (2)

anyT

where d7(s) = (1~ ) Y27 P(st = sl)
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Advanced Policy Gradients

What is it Good For?

Can we use this for policy improvement, where 7’ represents the new policy and 7 represents
the old one?

ma/xJ(7r') = max J(r') = J(r) = max E Z'y (st,at)

s K

This is suggestive, but not useful yet.

@ Nice feature of this optimization problem: defines the performance of 7’ in terms of the
advantages from 7!

@ But, problematic feature: still requires trajectories sampled from «’. ..

Dr. Amey Pore (Winter 2026) Advanced PG February 11, 2026 18 /54



Looking at it from Another Angle. ..

In terms of the discounted future state distribution d™, defined by
o0
d"(s) = (1—7) > _v'P(st = sm),
t=0
we can rewrite the relative policy performance identity:

Z’Y 5t,3t]

J(') — J(x) = Ero
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Advanced Policy Gradients

Note: Instance of Importance Sampling

In terms of the discounted future state distribution d™, defined by

d™(s) = (1=7)D_7"P(st = s|m),
t=0

we can rewrite the relative policy performance identity:

J(7') = J(7) =B Zv st,at] (3)
1 ™
-1 Eﬂr [A (s, a)] (4)
Ll [F6E) e,
T B [T ) ©)

. . . . . /
Last step is an instance of importance sampling. almost there! Only problem is s ~ d™ .
Dr. Amey Pore (Winter 2026) Advanced PG
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Advanced Policy Gradients

A Useful Approximation

What if we just said d™ =~ d™ and didn't worry about it?

TR WU S Kl G O I S R
J(Tl') J( ) 177Es~d |:7T(a|5) A ( ’ ):| L7T( )

anym

Turns out: this approximation is pretty good when 7/ and 7 are close! But why, and how close
do they have to be?

Relative policy performance bounds:!

J(7') = J() + La(n") = C\/Esar[Drr (|| 7)[s]]

If policies are close in KL-divergence—the approximation is good!

!Achiam, Held, Tamar, Abbeel, 2017
Dr. Amey Pore (Winter 2026) Advanced PG
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What is KL-divergence?

For probability distributions P and @ over a discrete random variable,

DkL(PlIQ) = ZP );)

Properties:
e Dxr(P|P)=0
e Dxi(P||@Q) >0
o Dxr1(P||Q) # Dki(Q]||P) — Non-symmetric!

What is KL-divergence between policies?

D (| m)ls] = 3 ' (als) log —21%)

= m(als)
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A Useful Approximation

What did we gain from making that approximation?

J(7') = J(7) =~ Lo (7")

1 [w’(a\s) AT(s, a)} (6)

T 14 54 [ #(als)
=B |30t T g )
T~ t:Ofy 7_‘_(at‘St) ty dt

@ This is something we can optimize using trajectories sampled from the old policy 7!

@ Similar to using importance sampling, but because weights only depend on current
timestep (and not preceding history), they don't vanish or explode.
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Advanced Policy Gradients

Recommended Reading

o “Approximately Optimal Approximate Reinforcement Learning,” Kakade and Langford,
2002

@ "“Trust Region Policy Optimization,” Schulman et al. 2015
@ "Constrained Policy Optimization,” Achiam et al. 2017
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Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately penalize
policies from changing too much between steps. Two variants:

Adaptive KL Penalty

@ Policy update solves unconstrained optimization problem

0k+1 = arg mé'ax Lgk(ﬁ) — ,Bk DKL(HHQ;() (8)
D1 (0110k) = Esmami [ Dxi(mo, (-|5), ma(:|s))]

@ Penalty coefficient 5, changes between iterations to approximately enforce KL-divergence
constraint

Dr. Amey Pore (Winter 2026)
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~F0o__________________________________________________________________
PPO with Adaptive KL Penalty

1: Input: initial policy parameters 6y, initial KL penalty By, target KL-divergence ¢
2: for k=0,1,2,... do

3: Collect set of partial trajectories Dy on policy m, = w(6k)
4: Estimate advantages A7* using any advantage estimation algorithm
5 Compute policy update

Ory1 = arg max Lo, (0) — Bk Dxr.(0]16x)

by taking K steps of minibatch SGD (via Adam)

6: if DKL(9k+1||9k) > 1.56 then

7: 6k+1_: 2Bk

8: else if DKL(0k+1||0k) < 5/15 then
9: Bry1 = Bi/2

10: end if

11: end for

@ Initial KL penalty not that important—it adapts quickly

@ Some iterations may violate KL constraint, but most don't
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0
PPO with Adaptive KL Penalty: Multiple Gradient Steps

1: Input: initial policy parameters 6y, initial KL penalty By, target KL-divergence ¢
2: for k=0,1,2,... do

3: Collect set of partial trajectories Dy on policy m, = w(6k)
4: Estimate advantages A7* using any advantage estimation algorithm
5 Compute policy update

Ory1 = arg max Lo, (0) — Bk Dxr.(0]16x)

by taking K steps of minibatch SGD (via Adam)

6: if DKL(9k+1||9k) > 1.56 then

7: 6k+1_: 2Bk

8: else if DKL(0k+1||0k) < 5/15 then
9: Bry1 = Bi/2

10: end if

11: end for

@ Initial KL penalty not that important—it adapts quickly

@ Some iterations may violate KL constraint, but most don't
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Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce KL
constraint without computing natural gradients. Two variants:

Adaptive KL Penalty
o Policy update solves unconstrained optimization problem
Ok+1 = argmaxg Ly, (0) — Bk Dkr.(0]/0k)

@ Penalty coefficient 5; changes between iterations to approximately enforce KL-divergence
constraint

Clipped Objective
o New objective function: let ri(0) = mg(a¢|st)/mp, (at|st). Then

CLIP () —
Ly, = Erom [

M*i

m|n< ) ATk, clip(re(0), 1—¢, 1+e¢) /2\7;")]

@ where € is a hyperparameter (maybe € = 0.2)
@ Policy update is 0,1 = arg maxy LgkLIP(Q)
Dr. Amey Pore (Winter 2026) Advanced PG
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Think Pair wise: Proximal Policy Optimization

Clipped Objective function: let ri(8) = mg(at|st)/mp, (at|st). Then

-
LQCkLIP(e) =FErr, [Z min(rt(e) ATk, clip(re(0), 1—¢, 1+€) AA?k)]
t=0
where € is a hyperparameter (maybe € = 0.2). Policy update is 0,41 = arg maxg LeckLIP(G).
Consider the figure. Select all that are true. € € (0,1).

@ The left graph shows the LMP objective when the advantage _
function A > 0 and the right graph shows when A < 0 ==

@ The right graph shows the LS objective when the
advantage function A > 0 and the left graph shows when i -

A<O ' Y o
Figure: schulman, Wolski, Dhariwal,
@ It depends on the value of € Radford, Klimov, 2017
@ Not sure
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0
Proximal Policy Optimization with Clipped Objective

But how does clipping keep policy close? By making objective as pessimistic as possible about
performance far away from 6:

— EdKLy)
Lo = Ei[ri]
—— Edcliplre. 1—£, 1+ )4
—— 1O = E [ minirede, clipln, 1= £, 1+ £)4,0]

Linear interpolation factor

Figure: Figure from Schulman et al., 2017: Various objectives as a function of interpolation factor a between
Ok+1 and Oy after one update of PPO-Clip
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0
Proximal Policy Optimization with Clipped Objective

1: Input: initial policy parameters 6y, clipping threshold ¢
2: for k=0,1,2,... do
3: Collect set of partial trajectories Dy on policy m, = 7(6k)
4: Estimate advantages A?k using any advantage estimation algorithm
5: Compute policy update
Ok41 = arg max LGHP(6)

by taking K steps of minibatch SGD (via Adam), where

LCLIP =Frem, lz mln(rt ATX, chp(rt(Q), 1—¢, 1+E) ’Z\?k)]

6: end for

@ Clipping prevents policy from having incentive to go far away from 6,1

@ Clipping seems to work at least as well as PPO with KL penalty, but is simpler to implement
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0
Empirical Performance of PPO
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Figure: Figure: Performance comparison between PPO with clipped objective and various other deep RL
methods on a slate of MuJoCo tasks.

o Wildly popular, and key component of ChatGPT
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Recommended Reading

PPO
@ "Proximal Policy Optimization Algorithms,” Schulman et al. 2017
https://arxiv.org/pdf/1707.06347.pdf

@ OpenAl blog post on PPO, 2017
https://blog.openai.com/openai-baselines-ppo/

Dr. Amey Pore (Winter 2026) Advanced PG
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https://arxiv.org/pdf/1707.06347.pdf
https://blog.openai.com/openai-baselines-ppo/

PPO: Algorithm and Code Implementation Details

Logan Engstrom, Andrew llyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation Matters in Deep RL: A Case Study on PPO

and TRPO. ICLR 2020
https://openreview.net/forum?id=rletNirtPB

@ Reward scaling, learning rate annealing, etc. can make a significant difference

Advanced PG February 11, 2026
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Course Logistics

Course Logistics

Mid-term Exam: will be distributed on Feb 25th (in class).
Project Teams:

o Still many unassigned teams on Quercus.
e Students not in a team will be assigned randomly soon.
o Team Building: put a note of the topic you want to work on the sticky note.

o Al Code Implementations Clarifications:

o Goal: Reproduce the exact results reported in the paper.
e Form a hypothesis on how the behaviour changes with variations in specific parameters.

Project Proposal (Per Team):

o Due date pushed to March 27th.
o Expectation: Reading papers, proposing a new idea, and providing some preliminary results.

Logistics for A2:

o Still checking if peer review is possible for A2.
o If not, we will have another quiz. (10%)
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Course Logistics

Break: 10 minutes

Paste your ideas on the sticky note and find your team.
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Generalized Advantage Estimation
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Generalized Advantage Estimation

Recall Proximal Policy Optimization

PPO is a family of methods that approximately enforce KL constraint
o Adaptive KL Penalty
e Policy update solves unconstrained optimization problem

Ox1 = argmax Lo, (0) — BkDi (116x)

e Penalty coefficient 5x changes between iterations to approximately enforce KL-divergence
constraint
o Clipped Objective
o New objective function: let r:(0) = mg(a¢|st)/mo, (at|st). Then
T
CLIP(Q) Err, lz [min(rt(H)A’tTk’clip(rt(ﬂ), 1—¢1+ e)A?k)”
t=0
where € is a hyperparameter (maybe ¢ = 0.2)
o Policy update is 01 = arg maxg L§"7(0)
How do we estimate the advantage function inside the policy update?
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Generalized Advantage Estimation

Recall N-step estimators T
VoV(0) ~ (1/m) Y Y AiVelogmo(arilss)
i=1 t=0

o Recall the N-step advantage estimators
AL = re 4V (se41) = V(st)
AP = 1+ a1 + 2 V(se42) — V(s)
Aginf) =+ + Y2+ — V(st)
o Define 6 = r; +yV(sex1) — V(st). Then
[\(1) =Y
AP = 5V +~5Y,,

Ag Z ’Yl(st+l
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Generalized Advantage Estimator (GAE)

k—1
AL =33 e+ V(o) = V(se) (1)

@ GAE is an exponentially-weighted average of k-step estimators
ATEOA) — (1 = 2\ (AW 4 AAD 4 224D )
= (1= M) + A6 +764) +A2(6V + 900 +776) + )

=1 =N A +A+N+ )+ 905 A+ N+ )
+76t+2(/\2+)\3+...)+...)

1 1
(17)\)(6‘/ >\+7)\5t+1 — 2A5t+2ﬁ+...)

Z YA) 5t+/
1=0
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Generalized Advantage Estimator (GAE) in PPO

@ GAE is an exponentially-weighted average of k-step estimators
k—1

~(k
AE ) — Z’ert—i-/ + ’Yk V(stik) — V(st)
1=0

5 = re+9V(ser1) — V(se)
ASAECN) _ (1 = \)(AD £ 2AP + 2248 1)

@ Benefits: Only have to run policy in environment for T timesteps before updating,
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Generalized Advantage Estimation

Final Proximal Policy Optimization

1: Input: initial policy parameters 6y, clipping threshold
2: for k=0,1,2,... do
3: Collect set of partial trajectories Dy on policy m, = w(6k)

4: Estimate advantages A™ using Generalized Advantage Estimation (GAE)
5: Compute policy update
Ok41 = arg max LGHP(0)
by taking K steps of minibatch SGD (via Adam), where
LG (0) = Er o, lz mm(rt ATk, clip(re(8), 1—¢, 14¢) A?k)]
6: end for

Some example hyperparameters:
~2000 timesteps in batch of data
~10 epochs when updating policy

(M ~ 300 gradient steps with batch size 64)
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Soft Actor Critic
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Soft Actor Critic

Off-Policy Actor-Critic Methods

So far:

@ use one batch of policy data for one gradient step (fully on-policy)

@ use one batch of policy data for multiple gradient steps (starting to be off-policy)
Can we be even more off-policy?

Idea: Can we reuse data from previous batches, i.e. all of the past trial-and-error data?

Two key ideas

© Maintain a replay buffer of all past data

@ Adjust equations to remove on-policy assumptions

Dr. Amey Pore (Winter 2026)
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DQN Pseudocode

1: Input: E «,s,a,r,s’ ~ m; Initialize D = (), w = 0

2: Set other state wg

3: for episode = 1,..., E do do

4 Initialize s;

5 fort=1,..., T do do

6 Observe reward r; and next state syt

7: Store transition (st, at, rt, st+1) in replay buffer D

8: fori=1,...,K do do

9 Sample random minibatch of transitions (s, a, r,s’) from D

_—

10: if s¢11 is terminal at step t 4 1 then then dataset of transitions

11: Set yr = rt (imtay irier) ’
12: else A wiafs) (e.g. cgreedy)

13: Set yr = re + vy maxy Q(st+1,a’;w™) i T

14: end if

15: Perform gradient descent step on (y: — @(st, ar;w))? wrt. w

16: end for

17: Every C steps: w~ =w

18: end for

19: end for
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Soft Actor Critic

Fixing the Value Function

Solution: Fit Q(s, a) instead of V,(s).
The datapoints we have: (s, a, r,s’) + future reward.

o If we fit V,(s), we assume the next action comes from 7 (but a in buffer is from old
policy).
o If we fit Qu(s, a), we pass the action as input!

o It is okay if a is different from what the current policy would have done.
Q-Learning Update Strategy:
QW(sv a) — r(s, a) + 7E5’~p(~|s,a),a’~7r(~|s’)[QW(SI7 a/)]

We use samples (s, a, r,s’) from the replay buffer, but sample the next action a’ from the
current policy.
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Off Policy Actor-Critic

1: Input: initial policy parameters 6, Q-function parameters w, Replay Buffer D
2: for k=0,1,2,... do

3: Collect set of partial trajectories on policy 7w, and add to D
4: Sample batch of transitions B ~ D
5: Update critic Q,, using Q-learning update strategy
6: Compute policy update

o Original Policy Gradient: VgJ(0) = E,[>, Vo log mg(ac|s:)Ac]

@ Adapted for SAC (Q-function):

Vol(0) ~ 18] Z Vo log mg(als)Qu (s, a)
seB

7: end for

Haarnoja, Zhou, Abbeel, Levine. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning
with a Stochastic Actor. 2018.

https://sites.google.com/view/sac-and-applications/
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Soft Actor Critic

Soft actor critic

SAC
o 6000 ___ pppg

— PPO
5QL
— TD3 [cuntyﬂ'ent}

6000 (i.e. with replay buffer'l

4000
4000

average return
average return

(A H less off-policy
2000 || Mﬁ% {: e. no replay buffer)
o 0 ‘Aﬁ.’w‘:% R -

0 2 4 6 8 10 0 2 4 [0 8 10
million steps million steps

(e) Humanoid-v1 (F) Humanoid (rllab)

2000

e + Off-policy with replay buffer (e.g. soft actor-critic) can be far more data efficient

@ - They can also generally be a lot harder to tune hyperparameters, less stable (than e.g.
PPO)
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Soft Actor Critic

When to use one online RL algorithm vs. another?

o PPO & variants

o When you care about stability, ease-of-use
e When you don't care about data efficiency

o DQN & variants

o When you have discrete actions or low-dimensional continuous actions

o SAC & variants

o When you care most about data efficiency
o When you are okay with tuning hyperparameters, less stability
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Monotonic Improvement Theory

Outline

Recall

Problems with Policy Gradient Methods
Policy Performance Bounds

Proximal Policy Optimization Algorithm
Generalized Advantage Estimation
Off-policy Actor Critic

Monotonic Improvement Theory

000000
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Monotonic Improvement Theory

Monotonic Improvement Theory

From the bound on the previous slide, we get

J(@') = I(m) 2 La(n") = C/Esgr [Dgcr(w'[|)[s]]

If we maximize the RHS with respect to 7/, we are guaranteed to improve over 7.
e This is a majorize-maximize algorithm w.r.t. the true objective, the LHS.

@ And L (7") and the KL-divergence term can both be estimated with samples from 7!
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Monotonic Improvement Theory

Monotonic Improvement Theory

Proof of improvement guarantee: Suppose 7,1 and 7y are related by

Tyt = argmax Lr, (1) — Cv/Esre [Dicr (') 5]

@ 7k is a feasible point, and the objective at 7y is equal to 0.
o L (mk) X Es agmic n [A™(s,a)] =0
o Dkr(mkllm)[s] =0

@ — optimal value > 0

e — by the performance bound, J(myy1) — J(mx) >0

This proof works even if we restrict the domain of optimization to an arbitrary class of
parametrized policies [y, as long as 7 € ly.
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Monotonic Improvement Theory

Approximate Monotonic Improvement

T+1 = arg max Ly (7) — Cv/Esgmic[Dxr (7|7 [5]]

Problem:
@ C provided by theory is quite high when -y is near 1

@ — steps are too small.

Potential Solution:
@ Tune the KL penalty

@ Use KL constraint (called trust region).
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