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Course Logistics

Course Logistics

Project Teams:
Still many unassigned teams on Quercus.
Students not in a team will be assigned randomly soon.
Team Building: put a note of the topic you want to work on the sticky note.
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Course Logistics

Think pair wise

Which of the following are true about REINFORCE? In the following options, PG stands for
policy gradient.

(A) Adding a baseline term can help to reduce the variance of the PG updates

(B) It will converge to a global optima

(C) It can be initialized with a sub-optimal, deterministic policy and still converge to a local
optima, given the appropriate step sizes

(D) If we take one step of PG, it is possible that the resulting policy gets worse (in terms of
achieved returns) than our initial policy
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Course Logistics

Outline
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4 Proximal Policy Optimization Algorithm
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6 Off-policy Actor Critic

7 Monotonic Improvement Theory
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Course Logistics

REINFORCE Algorithm

Using policy gradient theorem

Using return Gt as an unbiased estimate of Qπθ(st , at)

Stochastic gradient ascent update:

∆θt = α∇θ log πθ(st , at)Gt

1: Initialize policy parameters θ arbitrarily
2: for each episode {s1, a1, r2, · · · , sT−1, aT−1, rT} ∼ πθ do
3: for t = 1 to T − 1 do
4: θ ← θ + α∇θ log πθ(st |at)Gt

5: end for
6: end for
7: return θ
Very high variance!
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Course Logistics

Action-Value Actor-Critic

Simple actor-critic algorithm based on action-value critic
Using linear value fn approx. Qw (s, a) = ϕ(s, a)⊤w

Critic Updates w by linear TD(0)
Actor Updates θ by policy gradient

1: function Q-Actor Critic
2: Initialize s, θ
3: Sample action a ∼ πθ(·|s)
4: for each step do
5: Sample reward r = R(s, a); sample transition s ′ ∼ P(·|s, a)
6: Sample action a′ ∼ πθ(·|s ′)
7: δ ← r + γQw (s

′, a′)− Qw (s, a)
8: θ ← θ + α∇θ log πθ(a|s)Qw (s, a)
9: w ← w + βδϕ(s, a)

10: a← a′, s ← s ′

11: end for
12: end function

Dr. Amey Pore (Winter 2026) Advanced PG February 11, 2026 6 / 54



Course Logistics

“Vanilla” Policy Gradient Algorithm

1: Initialize policy parameter θ, baseline b
2: for iteration = 1, 2, · · · do
3: Collect a set of trajectories by executing the current policy
4: At each timestep t in each trajectory τ i , compute:
5: Return G i

t =
∑T−1

t′=t r
i
t′

6: Advantage estimate Âi
t = G i

t − b(st)
7: Re-fit the baseline, by minimizing

∑
i

∑
t ∥b(st)− G i

t∥2
8: Update the policy, using a policy gradient estimate ĝ :
9: ĝ =

∑
i

∑
t ∇θ log π(at |st , θ)Âi

t

10: (Plug ĝ into SGD or ADAM)
11: end for

Other Baseline: Aπ(s, a) = Qπ
w (s, a)− V π

w (s)︸ ︷︷ ︸
Advantage Actor Critic
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Course Logistics

Asynchronous Advantage Actor-Critic (A3C)

Figure: A3C: Multiple workers interact with their own environments and update a global network
asynchronously.

Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, Kavukcuoglu. Asynchronous Methods for Deep
Reinforcement Learning. ICML 2016.
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Advanced Policy Gradients
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Advanced Policy Gradients

Policy Gradients Review

Policy gradient algorithms try to solve the optimization problem

max
θ

J(πθ)
.
= Eτ∼πθ

[ ∞∑
t=0

γtrt

]
by taking stochastic gradient ascent on the policy parameters θ, using the policy gradient

g = ∇θJ(πθ) = Eτ∼πθ

[ ∞∑
t=0

γt∇θ log πθ(at |st)Aπθ(st , at)

]
Limitations of policy gradients:

Sample efficiency is poor
Distance in parameter space ̸= distance in policy space!

What is policy space? For tabular case, set of matrices
Π =

{
π : π ∈ R|S|×|A|,

∑
a πsa = 1, πsa ≥ 0

}
Policy gradients take steps in parameter space
Step size is hard to get right as a result
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Advanced Policy Gradients

Sample Efficiency in Policy Gradients

Sample efficiency for vanilla policy gradient methods is poor

Discard each batch of data immediately after just one gradient step

Why? PG is an on-policy expectation.

Two main approaches to obtaining an unbiased estimate of the policy gradient

Collect sample trajectories from policy, then form sample estimate. (More stable)

Use trajectories from other policies (Less stable)

Opportunity: use old data to take multiple gradient steps before using the resulting
new policy to gather more data

Challenge: even if this is possible to use old data to estimate multiple gradients, how
many steps should be taken?
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Advanced Policy Gradients

Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:

θk+1 = θk + αk ĝk

with step ∆k = αk ĝk .

If the step is too large, performance collapse is possible (Why?)
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Advanced Policy Gradients

Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:

θk+1 = θk + αk ĝk

with step ∆k = αk ĝk .

If the step is too large, performance collapse is possible (Why?)

If the step is too small, progress is unacceptably slow

“Right” step size changes based on θ

Automatic learning rate adjustment like advantage normalization, or Adam-style
optimizers, can help. But does this solve the problem?
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Advanced Policy Gradients

Choosing a Step Size for Policy Gradients

Figure: Policy parameters on x-axis and performance on y -axis. A bad step can lead to performance
collapse, which may be hard to recover from.
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Advanced Policy Gradients

The Problem is More Than Step Size

Consider a family of policies with parametrization:

πθ(a) =

{
σ(θ) a = 1

1− σ(θ) a = 2

Figure: Small changes in the policy parameters can
unexpectedly lead to big changes in the policy.

Big question: how do we come up with
an update rule that doesn’t ever change

the policy more than we meant to?
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Advanced Policy Gradients

Relative Performance of Two Policies

In a policy optimization algorithm, we want an update step that

uses rollouts collected from the most recent policy as efficiently as possible,

and takes steps that respect distance in policy space as opposed to distance in parameter
space.

To figure out the right update rule, we need to exploit relationships between the performance
of two policies.

Performance difference lemma: For any policies π, π′

J(π′)− J(π) = Eτ∼π′

[ ∞∑
t=0

γtAπ(st , at)

]
(1)

=
1

1− γ
E
s∼dπ′

a∼π′
[Aπ(s, a)] (2)

where dπ(s) = (1− γ)
∑∞

t=0 γ
tP(st = s|π)
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Advanced Policy Gradients

What is it Good For?

Can we use this for policy improvement, where π′ represents the new policy and π represents
the old one?

max
π′

J(π′) = max
π′

J(π′)− J(π) = max
π′

Eτ∼π′

[ ∞∑
t=0

γtAπ(st , at)

]

This is suggestive, but not useful yet.

Nice feature of this optimization problem: defines the performance of π′ in terms of the
advantages from π!

But, problematic feature: still requires trajectories sampled from π′. . .
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Advanced Policy Gradients

Looking at it from Another Angle. . .

In terms of the discounted future state distribution dπ, defined by

dπ(s) = (1− γ)
∞∑
t=0

γtP(st = s|π),

we can rewrite the relative policy performance identity:

J(π′)− J(π) = Eτ∼π′

[ ∞∑
t=0

γtAπ(st , at)

]
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Advanced Policy Gradients

Note: Instance of Importance Sampling

In terms of the discounted future state distribution dπ, defined by

dπ(s) = (1− γ)
∞∑
t=0

γtP(st = s|π),

we can rewrite the relative policy performance identity:

J(π′)− J(π) = Eτ∼π′

[ ∞∑
t=0

γtAπ(st , at)

]
(3)

=
1

1− γ
E
s∼dπ′

a∼π′
[Aπ(s, a)] (4)

=
1

1− γ
E
s∼dπ′

a∼π

[
π′(a|s)
π(a|s)

Aπ(s, a)

]
(5)

Last step is an instance of importance sampling. almost there! Only problem is s ∼ dπ′
.
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Advanced Policy Gradients

A Useful Approximation

What if we just said dπ′ ≈ dπ and didn’t worry about it?

J(π′)− J(π) ≈ 1

1− γ
Es∼dπ

a∼π

[
π′(a|s)
π(a|s)

Aπ(s, a)

]
.
= Lπ(π

′)

Turns out: this approximation is pretty good when π′ and π are close! But why, and how close
do they have to be?

Relative policy performance bounds:1

J(π′) ≥ J(π) + Lπ(π
′)− C

√
Es∼dπ [DKL(π′∥π)[s]]

If policies are close in KL-divergence—the approximation is good!

1Achiam, Held, Tamar, Abbeel, 2017
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Advanced Policy Gradients

What is KL-divergence?

For probability distributions P and Q over a discrete random variable,

DKL(P∥Q) =
∑
x

P(x) log
P(x)

Q(x)

Properties:

DKL(P∥P) = 0

DKL(P∥Q) ≥ 0

DKL(P∥Q) ̸= DKL(Q∥P) — Non-symmetric!

What is KL-divergence between policies?

DKL(π
′∥π)[s] =

∑
a∈A

π′(a|s) log π′(a|s)
π(a|s)
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Advanced Policy Gradients

A Useful Approximation

What did we gain from making that approximation?

J(π′)− J(π) ≈ Lπ(π
′)

Lπ(π
′) =

1

1− γ
Es∼dπ

a∼π

[
π′(a|s)
π(a|s)

Aπ(s, a)

]
(6)

= Eτ∼π

[ ∞∑
t=0

γt
π′(at |st)
π(at |st)

Aπ(st , at)

]
(7)

This is something we can optimize using trajectories sampled from the old policy π!

Similar to using importance sampling, but because weights only depend on current
timestep (and not preceding history), they don’t vanish or explode.
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Advanced Policy Gradients

Recommended Reading

“Approximately Optimal Approximate Reinforcement Learning,” Kakade and Langford,
2002

“Trust Region Policy Optimization,” Schulman et al. 2015

“Constrained Policy Optimization,” Achiam et al. 2017
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PPO
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PPO

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately penalize
policies from changing too much between steps. Two variants:

Adaptive KL Penalty

Policy update solves unconstrained optimization problem

θk+1 = argmax
θ

Lθk (θ)− βk D̄KL(θ∥θk) (8)

D̄KL(θ∥θk) = Es∼dπk

[
DKL

(
πθk (·|s), πθ(·|s)

)]
(9)

Penalty coefficient βk changes between iterations to approximately enforce KL-divergence
constraint
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PPO

PPO with Adaptive KL Penalty

1: Input: initial policy parameters θ0, initial KL penalty β0, target KL-divergence δ
2: for k = 0, 1, 2, . . . do
3: Collect set of partial trajectories Dk on policy πk = π(θk)
4: Estimate advantages Âπk

t using any advantage estimation algorithm
5: Compute policy update

θk+1 = argmax
θ

Lθk (θ)− βk D̄KL(θ∥θk)

by taking K steps of minibatch SGD (via Adam)
6: if D̄KL(θk+1∥θk) ≥ 1.5δ then
7: βk+1 = 2βk

8: else if D̄KL(θk+1∥θk) ≤ δ/1.5 then
9: βk+1 = βk/2

10: end if
11: end for

Initial KL penalty not that important—it adapts quickly

Some iterations may violate KL constraint, but most don’t
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PPO

PPO with Adaptive KL Penalty: Multiple Gradient Steps

1: Input: initial policy parameters θ0, initial KL penalty β0, target KL-divergence δ
2: for k = 0, 1, 2, . . . do
3: Collect set of partial trajectories Dk on policy πk = π(θk)
4: Estimate advantages Âπk

t using any advantage estimation algorithm
5: Compute policy update

θk+1 = argmax
θ

Lθk (θ)− βk D̄KL(θ∥θk)

by taking K steps of minibatch SGD (via Adam)
6: if D̄KL(θk+1∥θk) ≥ 1.5δ then
7: βk+1 = 2βk

8: else if D̄KL(θk+1∥θk) ≤ δ/1.5 then
9: βk+1 = βk/2

10: end if
11: end for

Initial KL penalty not that important—it adapts quickly

Some iterations may violate KL constraint, but most don’t
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PPO

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce KL
constraint without computing natural gradients. Two variants:

Adaptive KL Penalty

Policy update solves unconstrained optimization problem
θk+1 = argmaxθ Lθk (θ)− βk D̄KL(θ∥θk)
Penalty coefficient βk changes between iterations to approximately enforce KL-divergence
constraint

Clipped Objective

New objective function: let rt(θ) = πθ(at |st)/πθk (at |st). Then

LCLIP
θk

(θ) = Eτ∼πk

[
T∑
t=0

min
(
rt(θ) Â

πk
t , clip

(
rt(θ), 1−ϵ, 1+ϵ

)
Âπk
t

)]

where ϵ is a hyperparameter (maybe ϵ = 0.2)
Policy update is θk+1 = argmaxθ LCLIP

θk
(θ)
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PPO

Think Pair wise: Proximal Policy Optimization

Clipped Objective function: let rt(θ) = πθ(at |st)/πθk (at |st). Then

LCLIP
θk

(θ) = Eτ∼πk

[
T∑
t=0

min
(
rt(θ) Â

πk
t , clip

(
rt(θ), 1−ϵ, 1+ϵ

)
Âπk
t

)]
where ϵ is a hyperparameter (maybe ϵ = 0.2). Policy update is θk+1 = argmaxθ LCLIP

θk
(θ).

Consider the figure. Select all that are true. ϵ ∈ (0, 1).

The left graph shows the LCLIP objective when the advantage
function A > 0 and the right graph shows when A < 0

The right graph shows the LCLIP objective when the
advantage function A > 0 and the left graph shows when
A < 0

It depends on the value of ϵ

Not sure

Figure: Schulman, Wolski, Dhariwal,
Radford, Klimov, 2017
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PPO

Proximal Policy Optimization with Clipped Objective

But how does clipping keep policy close? By making objective as pessimistic as possible about
performance far away from θk :

Figure: Figure from Schulman et al., 2017: Various objectives as a function of interpolation factor α between
θk+1 and θk after one update of PPO-Clip
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PPO

Proximal Policy Optimization with Clipped Objective

1: Input: initial policy parameters θ0, clipping threshold ϵ
2: for k = 0, 1, 2, . . . do
3: Collect set of partial trajectories Dk on policy πk = π(θk)
4: Estimate advantages Âπk

t using any advantage estimation algorithm
5: Compute policy update

θk+1 = argmax
θ

LCLIP
θk

(θ)

by taking K steps of minibatch SGD (via Adam), where

LCLIP
θk

(θ) = Eτ∼πk

[
T∑
t=0

min
(
rt(θ) Â

πk
t , clip

(
rt(θ), 1−ϵ, 1+ϵ

)
Âπk
t

)]

6: end for

Clipping prevents policy from having incentive to go far away from θk+1

Clipping seems to work at least as well as PPO with KL penalty, but is simpler to implement
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PPO

Empirical Performance of PPO

Figure: Figure: Performance comparison between PPO with clipped objective and various other deep RL
methods on a slate of MuJoCo tasks.

Wildly popular, and key component of ChatGPT
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PPO

Recommended Reading

PPO

“Proximal Policy Optimization Algorithms,” Schulman et al. 2017
https://arxiv.org/pdf/1707.06347.pdf

OpenAI blog post on PPO, 2017
https://blog.openai.com/openai-baselines-ppo/
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PPO

PPO: Algorithm and Code Implementation Details

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation Matters in Deep RL: A Case Study on PPO
and TRPO. ICLR 2020

https://openreview.net/forum?id=r1etN1rtPB

Reward scaling, learning rate annealing, etc. can make a significant difference
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Course Logistics

Course Logistics

Mid-term Exam: will be distributed on Feb 25th (in class).

Project Teams:
Still many unassigned teams on Quercus.
Students not in a team will be assigned randomly soon.
Team Building: put a note of the topic you want to work on the sticky note.

A1 Code Implementations Clarifications:
Goal: Reproduce the exact results reported in the paper.
Form a hypothesis on how the behaviour changes with variations in specific parameters.

Project Proposal (Per Team):
Due date pushed to March 27th.
Expectation: Reading papers, proposing a new idea, and providing some preliminary results.

Logistics for A2:
Still checking if peer review is possible for A2.
If not, we will have another quiz. (10%)
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Course Logistics

Break: 10 minutes

Paste your ideas on the sticky note and find your team.
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Generalized Advantage Estimation
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Generalized Advantage Estimation

Recall Proximal Policy Optimization

PPO is a family of methods that approximately enforce KL constraint
Adaptive KL Penalty

Policy update solves unconstrained optimization problem

θk+1 = argmax
θ
Lθk (θ)− βkD̄KL(θ||θk)

Penalty coefficient βk changes between iterations to approximately enforce KL-divergence
constraint

Clipped Objective
New objective function: let rt(θ) = πθ(at |st)/πθk (at |st). Then

LCLIP
θk

(θ) = Eτ∼πk

[
T∑
t=0

[
min(rt(θ)Â

πk
t , clip(rt(θ), 1− ϵ, 1 + ϵ)Âπk

t )
]]

where ϵ is a hyperparameter (maybe ϵ = 0.2)
Policy update is θk+1 = argmaxθ LCLIP

θk
(θ)

How do we estimate the advantage function inside the policy update?
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Generalized Advantage Estimation

Recall N-step estimators
∇θV (θ) ≈ (1/m)

m∑
i=1

T−1∑
t=0

Ati∇θ log πθ(ati |sti )

Recall the N-step advantage estimators

Â
(1)
t = rt + γV (st+1)− V (st)

Â
(2)
t = rt + γrt+1 + γ2V (st+2)− V (st)

Â
(inf)
t = rt + γrt+1 + γ2rt+2 + · · · − V (st)

Define δVt = rt + γV (st+1)− V (st). Then

Â
(1)
t = δVt

Â
(2)
t = δVt + γδVt+1

Â
(k)
t =

k−1∑
l=0

γ lδVt+l

Note the above is an instance of a telescoping sumDr. Amey Pore (Winter 2026) Advanced PG February 11, 2026 40 / 54



Generalized Advantage Estimation

Generalized Advantage Estimator (GAE)

Â
(k)
t =

k−1∑
l=0

γ l rt+l + γkV (st+k)− V (st) (1)

GAE is an exponentially-weighted average of k-step estimators

Â
GAE(γ,λ)
t = (1− λ)(Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . . )

= (1− λ)(δVt + λ(δVt + γδVt+1) + λ2(δVt + γδVt+1 + γ2δVt+2) + . . . )

= (1− λ)(δVt (1 + λ+ λ2 + . . . ) + γδVt+1(λ+ λ2 + . . . )

+ γ2δVt+2(λ
2 + λ3 + . . . ) + . . . )

= (1− λ)(δVt
1

1− λ
+ γλδVt+1

1

1− λ
+ γ2λ2δVt+2

1

1− λ
+ . . . )

=
∞∑
l=0

(γλ)lδVt+l

Introduced in “High-Dimensional Continuous Control Using Generalized Advantage Estimation”
ICLR 2016 by Schulman et al.
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Generalized Advantage Estimation

Generalized Advantage Estimator (GAE) in PPO

GAE is an exponentially-weighted average of k-step estimators

Â
(k)
t =

k−1∑
l=0

γ l rt+l + γkV (st+k)− V (st)

δVt = rt + γV (st+1)− V (st)

Â
GAE(γ,λ)
t = (1− λ)(Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . . )

=
∞∑
l=0

(γλ)lδVt+l

PPO uses a truncated version of a GAE

Ât =
T−t−1∑
l=0

(γλ)lδVt+l

Benefits: Only have to run policy in environment for T timesteps before updating,
improved estimate of gradientDr. Amey Pore (Winter 2026) Advanced PG February 11, 2026 42 / 54



Generalized Advantage Estimation

Final Proximal Policy Optimization

1: Input: initial policy parameters θ0, clipping threshold ϵ
2: for k = 0, 1, 2, . . . do
3: Collect set of partial trajectories Dk on policy πk = π(θk)
4: Estimate advantages Âπk

t using Generalized Advantage Estimation (GAE)
5: Compute policy update

θk+1 = argmax
θ

LCLIP
θk

(θ)

by taking K steps of minibatch SGD (via Adam), where

LCLIP
θk

(θ) = Eτ∼πk

[
T∑
t=0

min
(
rt(θ) Â

πk
t , clip

(
rt(θ), 1−ϵ, 1+ϵ

)
Âπk
t

)]
6: end for

Some example hyperparameters:
∼2000 timesteps in batch of data
∼10 epochs when updating policy

(M ≈ 300 gradient steps with batch size 64)
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Soft Actor Critic
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Soft Actor Critic

Off-Policy Actor-Critic Methods

So far:

use one batch of policy data for one gradient step (fully on-policy)

use one batch of policy data for multiple gradient steps (starting to be off-policy)

Can we be even more off-policy?

Idea: Can we reuse data from previous batches, i.e. all of the past trial-and-error data?

Two key ideas

1 Maintain a replay buffer of all past data

2 Adjust equations to remove on-policy assumptions
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Soft Actor Critic

DQN Pseudocode

1: Input: E , α, s, a, r , s′ ∼ π; Initialize D = ∅, w = 0
2: Set other state w0

3: for episode = 1, . . . ,E do do
4: Initialize s1
5: for t = 1, . . . ,T do do
6: Observe reward rt and next state st+1

7: Store transition (st , at , rt , st+1) in replay buffer D
8: for i = 1, . . . ,K do do
9: Sample random minibatch of transitions (s, a, r , s′) from D
10: if st+1 is terminal at step t + 1 then then
11: Set yt = rt
12: else
13: Set yt = rt + γmaxa′ Q̂(st+1, a′;w−)
14: end if
15: Perform gradient descent step on (yt − Q̂(st , at ;w))2 w.r.t. w
16: end for
17: Every C steps: w− = w
18: end for
19: end for
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Soft Actor Critic

Fixing the Value Function

Solution: Fit Qw (s, a) instead of Vv (s).

The datapoints we have: (s, a, r , s ′) + future reward.

If we fit Vv (s), we assume the next action comes from π (but a in buffer is from old
policy).

If we fit Qw (s, a), we pass the action as input!

It is okay if a is different from what the current policy would have done.

Q-Learning Update Strategy:

Qw (s, a)← r(s, a) + γEs′∼p(·|s,a),a′∼π(·|s′)[Qw (s
′, a′)]

We use samples (s, a, r , s ′) from the replay buffer, but sample the next action a′ from the
current policy.
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Soft Actor Critic

Off Policy Actor-Critic

1: Input: initial policy parameters θ, Q-function parameters w , Replay Buffer D
2: for k = 0, 1, 2, . . . do
3: Collect set of partial trajectories on policy πk and add to D
4: Sample batch of transitions B ∼ D
5: Update critic Qw using Q-learning update strategy
6: Compute policy update

Original Policy Gradient: ∇θJ(θ) = Eτ∼π[
∑

t ∇θ log πθ(at |st)Ât ]
Adapted for SAC (Q-function):

∇θJ(θ) ≈
1

|B|
∑
s∈B

∇θ log πθ(a|s)Qw (s, a)

7: end for

Haarnoja, Zhou, Abbeel, Levine. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning
with a Stochastic Actor. 2018.

https://sites.google.com/view/sac-and-applications/
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Soft Actor Critic

Soft actor critic

+ Off-policy with replay buffer (e.g. soft actor-critic) can be far more data efficient

- They can also generally be a lot harder to tune hyperparameters, less stable (than e.g.
PPO)
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Soft Actor Critic

When to use one online RL algorithm vs. another?

PPO & variants
When you care about stability, ease-of-use
When you don’t care about data efficiency

DQN & variants
When you have discrete actions or low-dimensional continuous actions

SAC & variants
When you care most about data efficiency
When you are okay with tuning hyperparameters, less stability
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Monotonic Improvement Theory

Monotonic Improvement Theory

From the bound on the previous slide, we get

J(π′)− J(π) ≥ Lπ(π
′)− C

√
Es∼dπ [DKL(π′∥π)[s]]

If we maximize the RHS with respect to π′, we are guaranteed to improve over π.

This is a majorize-maximize algorithm w.r.t. the true objective, the LHS.

And Lπ(π
′) and the KL-divergence term can both be estimated with samples from π!
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Monotonic Improvement Theory

Monotonic Improvement Theory

Proof of improvement guarantee: Suppose πk+1 and πk are related by

πk+1 = argmax
π′

Lπk
(π′)− C

√
Es∼dπk [DKL(π′∥πk)[s]]

πk is a feasible point, and the objective at πk is equal to 0.

Lπk
(πk) ∝ Es,a∼dπk ,πk

[Aπk (s, a)] = 0
DKL(πk∥πk)[s] = 0

=⇒ optimal value ≥ 0

=⇒ by the performance bound, J(πk+1)− J(πk) ≥ 0

This proof works even if we restrict the domain of optimization to an arbitrary class of
parametrized policies Πθ, as long as πk ∈ Πθ.
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Monotonic Improvement Theory

Approximate Monotonic Improvement

πk+1 = argmax
π′

Lπk
(π′)− C

√
Es∼dπk [DKL(π′∥πk)[s]]

Problem:

C provided by theory is quite high when γ is near 1

=⇒ steps are too small.

Potential Solution:

Tune the KL penalty

Use KL constraint (called trust region).

Dr. Amey Pore (Winter 2026) Advanced PG February 11, 2026 54 / 54


	Course Logistics
	Advanced Policy Gradients
	PPO
	Course Logistics
	Generalized Advantage Estimation
	Soft Actor Critic
	Monotonic Improvement Theory

