
CSC415 Course Project: Simulation Environment

Setup
Comprehensive Installation Guide & Verification

Instructor Version

Overview

This document provides step-by-step instructions to install and verify the five supported simu-
lation environments for the course project.

Prerequisites:

• OS: Linux (Ubuntu 20.04/22.04) is highly recommended. macOS (Apple Silicon) is sup-
ported by most but may require specific workarounds. Windows users are advised to use
WSL2 (Windows Subsystem for Linux) with GUI support.

• Python Manager: We strongly recommend using uv for ultra-fast environment man-
agement and dependency resolution.

• GPU Requirement: Running code on a GPU is highly recommended. Training
RL agents, especially in visual or parallelized environments (like ManiSkill or mjlab), is
computationally intensive. CPU-only training will be significantly slower and may limit
the scope of experimentation.

1 Meta-World

Description: A benchmark for meta-reinforcement learning and multi-task learning consisting
of 50 distinct robotic manipulation tasks.
Repository: https://github.com/Farama-Foundation/Metaworld

Installation

Meta-World is now maintained by the Farama Foundation. It relies on the mujoco python
bindings.

1. Create and activate a fresh virtual environment using uv:

Create environment

uv venv metaworld_env --python 3.10

Activate environment

source metaworld_env/bin/activate

2. Install the package via uv pip:

uv pip install metaworld

1

https://github.com/Farama-Foundation/Metaworld

CSC415: Simulation Setup Guide Instructor Version

Verification

Run the following Python script to ensure the environment loads and renders.

import metaworld

import random

Initialize the benchmark (MT1 = Multi-Task 1 specific task)

ml1 = metaworld.ML1(’pick-place-v2’)

env = ml1.train_classes[’pick-place-v2’]()

task = random.choice(ml1.train_tasks)

env.set_task(task)

obs = env.reset()

for i in range(50):

action = env.action_space.sample() # Random action

obs, reward, done, info = env.step(action)

env.render() # Opens a viewer window

print("Meta-World installed successfully.")

2 ManiSkill

Description: A large-scale GPU-parallelized physical simulation benchmark for generalizable
manipulation skills.
Repository: https://github.com/haosulab/ManiSkill

Installation

ManiSkill requires Vulkan support. GPU acceleration is critical here; running parallel
environments on CPU is not recommended.

1. Create and activate a uv environment:

uv venv maniskill_env --python 3.10

source maniskill_env/bin/activate

2. Install Pytorch (ensure CUDA version matches your driver):

uv pip install torch torchvision --index-url https://download.pytorch.org/whl/

↪→ cu118

3. Install ManiSkill (latest version):

uv pip install mani_skill

Verification

ManiSkill includes a built-in demo script. Run the following command in your terminal:

Runs a random agent on the PickCube environment

python -m mani_skill.examples.demo_random_action -e PickCube-v1 --render-mode human

Page 2

https://github.com/haosulab/ManiSkill

CSC415: Simulation Setup Guide Instructor Version

Note: On first run, this command will prompt you to download necessary assets (Y/N).
Select Yes.

3 DeepMind Control Suite (DMC)

Description: A set of physics-based continuous control tasks (cartpole, cheetah, walker) pow-
ered by the MuJoCo physics engine.
Repository: https://github.com/deepmind/dm_control

Installation

1. Create and activate a uv environment:

uv venv dmc_env --python 3.10

source dmc_env/bin/activate

2. Install via uv pip:

uv pip install dm_control

3. (Optional) Install pygame for easier rendering callbacks in custom scripts:

uv pip install pygame

Verification

from dm_control import suite

from dm_control import viewer

Load the cartpole swingup task

env = suite.load(domain_name="cartpole", task_name="swingup")

Define a policy (random)

def random_policy(time_step):

del time_step # Unused

return [0.0] # Action dimension for cartpole is 1

Launch the interactive viewer

viewer.launch(env, policy=random_policy)

4 RLBench

Description: A challenging large-scale benchmark for robotic manipulation featuring 100+
completely unique tasks.
Repository: https://github.com/stepjam/RLBench

Page 3

https://github.com/deepmind/dm_control
https://github.com/stepjam/RLBench

CSC415: Simulation Setup Guide Instructor Version

Important Note on Dependencies

RLBench relies on CoppeliaSim (formerly V-REP). You generally must use CoppeliaSim
Edu V4.1.0. Newer versions often break the Python bindings (PyRep).

Installation Steps

1. Download CoppeliaSim V4.1.0 (Ubuntu 20.04 version recommended): Download
the tarball from the official archives or mirrors.

2. Extract and Set Environment Variables: Add the following to your ~/.bashrc or run
in your terminal before installation.

export COPPELIASIM_ROOT=/path/to/CoppeliaSim_Edu_V4_1_0_Ubuntu20_04

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$COPPELIASIM_ROOT
export QT_QPA_PLATFORM_PLUGIN_PATH=$COPPELIASIM_ROOT

3. Install PyRep (Python bindings):

git clone https://github.com/stepjam/PyRep.git

cd PyRep

Create environment for RLBench

uv venv rlbench_env --python 3.10

source rlbench_env/bin/activate

Install requirements

uv pip install -r requirements.txt

uv pip install .

4. Install RLBench:

cd ..

git clone https://github.com/stepjam/RLBench.git

cd RLBench

uv pip install -r requirements.txt

uv pip install .

Verification

from rlbench.environment import Environment

from rlbench.action_modes import ArmActionMode, ActionMode

from rlbench.observation_config import ObservationConfig

from rlbench.tasks import ReachTarget

Create environment configuration

action_mode = ActionMode(ArmActionMode.ABS_JOINT_VELOCITY)

env = Environment(action_mode, obs_config=ObservationConfig(), headless=False)

env.launch()

task = env.get_task(ReachTarget)

task.reset()

print("RLBench launched successfully. Check for the simulation window.")

env.shutdown()

Page 4

CSC415: Simulation Setup Guide Instructor Version

5 MuJoCo Playground (mjlab)

Description: A modern framework combining Isaac Lab’s API with MuJoCo physics, designed
for high-performance RL and robotics research.
Repository: https://github.com/mujocolab/mjlab

Installation

mjlab is designed to be installed with uv. A GPU is heavily recommended as the framework
leverages hardware acceleration for physics and rendering.

1. Install uv (if not installed):

pip install uv

2. Clone and Install:

git clone https://github.com/mujocolab/mjlab.git

cd mjlab

Install dependencies and the package in editable mode

uv sync

3. Note on Virtual Environment: uv sync automatically creates and manages a virtual
environment (‘.venv‘) inside the project directory. You can activate it with:

source .venv/bin/activate

Verification

Run the provided demo script to ensure the viewer and physics engine are working.

From inside the mjlab directory

uv run demo

This command should launch an interactive viewer with a pre-trained agent (e.g., Unitree G1)
tracking a reference motion.

Page 5

https://github.com/mujocolab/mjlab

	Meta-World
	ManiSkill
	DeepMind Control Suite (DMC)
	RLBench
	MuJoCo Playground (mjlab)

